摘要
以改善当前木质素催化降解存在的降解产物可控性较差、小分子化合物总收率较低、均一化程度不足、难以进一步开发利用等问题为目标,采用过渡金属硫酸盐NiSO4·6H2O协同Pd/C催化降解玉米芯酶解木质素,考察了过渡金属离子、反应温度、反应时间、NiSO4·6H2O与Pd/C协同作用等对木质素降解率的影响,并分析了降解产物的分布和催化作用机理。结果表明,NiSO4·6H2O可有效提高Pd/C对木质素的催化降解效率,如木质素降解率相较于单独使用Pd/C催化降解时提高14.5%,小分子化合物总收率提高39.9%,其中,酚类化合物的得率提高88.6%,且产物的均一化程度提高了35.8%;分析表明,由于NiSO4·6H2O的路易斯酸特性和镍离子的高电负性,木质素的醚键可有效地在Pd/C和NiSO4·6H2O酸性催化中心上发生裂解,并通过加氢反应,定向生成以酚类为主体的中间产物。
木质素是自然界第二大生物质资源,含量仅低于纤维素,在植物中的占比达20%~30%,每年全球约产生6×1
近年来,过渡金属盐因在生物质转化中的反应性较强而被广泛用作初级催化剂或协同催化
因此,本研究采用过渡金属硫酸盐NiSO4·6H2O协同Pd/C催化降解玉米芯酶解木质素,考察了金属离子、反应温度、反应时间、NiSO4·6H2O与Pd/C协同作用等对木质素降解率的影响,并通过元素分析、凝胶渗透色谱、红外光谱、气相色谱-质谱联用仪对木质素及其降解产物进行表征,对比了Pd/C、NiSO4·6H2O协同Pd/C催化降解玉米芯酶解木质素的产物分布,并分析了协同催化的作用机理。
玉米芯酶解木质素,工业级,山东龙力生物科技股份有限公司。Pd/C、NiSO4·6H2O等,分析纯,阿拉丁生化科技股份有限公司。甲醇、乙酸乙酯、四氢呋喃(THF)等,色谱纯,德国默克集团。
称取1 g的玉米芯酶解木质素(CL)于50 mL高温高压反应釜(聚四氟乙烯涂层)中,加入20 mL的甲醇为反应溶剂,添加一定量的催化剂。接着用氮气吹扫釜内3次,加盖锁紧反应釜,并将反应釜置于超声波仪中超声分散10 min,然后放置于电热鼓风干燥箱中,在反应温度220℃下反应5 h。结束后,待自然冷却30 min后出料,经过洗涤、过滤、分离后得到液体降解产物(LDLP)和固体残渣(LDSR)。实验设置不使用催化剂的体系为对照组。
CL的乙酰化处理:采用乙酰溴和冰醋酸的混合溶液(1∶9,V/V,10 mL)作乙酰化试剂,加入1.0 g的CL,在烧瓶中密封,在50℃、150 r/min下反应2 h,完成后将溶剂蒸干,所得固体为乙酰化木质素。
采用凝胶色谱仪(GPC,Waters2414,美国Waters公司)对样品的相对分子质量和相对分子质量分布进行测定,并用聚苯乙烯(PS)作为标样,以THF为流动相。采用元素分析仪(EA,Vario EL cube,德国Elementar公司)对化合物组成中的C、H、O等元素的含量进行分析表征。采用傅里叶变换红外光谱仪(FT-IR,AVATAR360智能型,美国尼高力仪器公司)对样品的官能团和键型进行分析表征,扫描范围为400~4000 c
为了研究不同过渡金属离子对Pd/C催化降解木质素的影响,选择7种过渡金属硫酸盐配合Pd/C作为催化剂,结果如

图1 不同过渡金属离子对CL降解率的影响
Fig. 1 Effects of different transition metal ions on CL degradation ratio
在未使用任何催化剂(对照样)时,木质素的降解率较低(40.6±2.2)%;单独使用Pd/C作为催化剂时,木质素降解率为(51.5±1.5)%;而在使用不同过渡金属硫酸盐协同Pd/C进行催化降解的情况下,木质素的降解率显著提高,说明过渡金属硫酸盐可以有效促进Pd/C催化降解木质素。据相关报

图2 过渡金属硫酸盐的甲醇溶液的氢离子浓度
Fig. 2 Hydrogen ion concentration in methanol solution of transition metal sulfates
在木质素降解过程中,温度在催化剂的活化和醚键的断裂中扮演着至关重要的角

图3 反应温度对CL降解率的影响
Fig. 3 Effect of reaction time on CL degradation ratio
在220℃下,研究反应时间对NiSO4·6H2O协同Pd/C催化降解木质素的影响,结果如

图4 反应时间对CL降解率的影响
Fig. 4 Effect of reaction time on CL degradation ratio
对比了最优工艺条件(220℃、5 h)下未使用催化剂、分别单独使用NiSO4·6H2O和Pd/C,以及NiSO4·6H2O和Pd/C协同作用4种情况下的木质素降解率,结果如
为了探究NiSO4·6H2O协同Pd/C对木质素降解产物分子质量分布的影响,采用GPC对木质素及其降解产物的分子质量进行测定,得到木质素及其降解产物的质均分子质量(Mw)、数均分子质量(Mn)和分散度d(d=Mw/Mn),结果如
为了进一步了解木质素结构的化学变化,采用元素分析仪对木质素及其降解产物的元素组分进行测定对比,结果如
由
为了进一步分析木质素及其降解产物的有机组分,对其进行FT-IR表征,结果如

图5 CL和LDLP的FT-IR谱图
Fig. 5 FT-IR spectra of CL and LDLP
由
为进一步探究NiSO4·6H2O与Pd/C协同作用对降解产物分布的影响,通过GC-MS对木质素降解产物的组分进行定性及定量分析,结果如

图6 LDLP的GC-MS谱图
Fig. 6 GC-MS spectra of LDLP
由
采用过渡金属硫酸盐NiSO4·6H2O协同Pd/C在甲醇体系中实现定向催化降解木质素,生成以酚类为主的小分子化合物,并进一步提高产物的均一化程度。结果表明,NiSO4·6H2O的路易斯酸特性和镍元素的高电负性,使得木质素的醚键可有效在Pd/C和NiSO4·6H2O酸性催化中心上发生降解,并通过加氢反应,生成以酚类为主体的中间产物。这种低成本、低能耗的木质素降解工艺将为木质素降解产物的可持续利用提供有益的参考。
参考文献
Lewis N G. Lignin: occurrence, biogenesis and biodegradation [J]. Annual Review Plant Physiology and Plant Molecular Biology, 1990, 41(1): 455-496. [百度学术]
Zakzeski J, Jongerius A L, Bruijnincx P C A, et al. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen [J]. ChemSusChem, 2012, 5(8): 1602-1609. [百度学术]
Ponnusamy V K, Nguyen D D, Dharmaraja J, et al. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential [J]. Bioresource Technology, 2019, 271: 462-472. [百度学术]
姚向荣, 詹怀宇, 周生飞. 催化剂对甘蔗渣碱木质素催化湿空气氧化降解的催化作用 [J]. 中国造纸学报, 2011, 26(2): 48-52. [百度学术]
YAO X R, ZHAN H Y, ZHOU S F. Degradation of Bagasse Alkaline Lignin by Catalytic Wet Air Oxidation with Five Catalysts [J]. Transactions of China Pulp and Paper, 2011, 26(2): 48-52. [百度学术]
高洪贵, 谢益民, 孙媛芳. 木质素模型化合物在Co-salen型仿酶降解体系中的结构变化 [J]. 中国造纸学报, 2009, 24(2): 27-31. [百度学术]
GAO H G, XIE Y M, SUN Y F. Biomimetic Degradation of Lignin Model Compound with Co-salen System [J]. Transactions of China Pulp and Paper, 2009, 24(2): 27-31. [百度学术]
Tuck C O, Pérez E, Horváth I T, et al. Valorization of biomass: Deriving more value from waste [J]. Science, 2012, 337(6095): 695-699. [百度学术]
Fu Y, Qin M, Wang Z, et al. Application of Lignin and Its Derivatives as Slow/Controlled Release Materials in Agricultural Fields [J]. Paper and Biomaterials, 2018, 3(1): 53-62. [百度学术]
Azadi P, Inderwildi O R, Farnood R, et al. Liquid fuels, hydrogen and chemicals from lignin: A critical review [J]. Renewable and Sustainable Energy Reviews, 2013, 21: 506-523. [百度学术]
Gasser C A, Hommes G, Schaffer A, et al. Multi-catalysis reactions: new prospects and challenges of biotechnology to valorize lignin [J]. Applied Microbiology and Biotechnology, 2012, 95(5): 1115-1134. [百度学术]
Tribulova T, Kacik F, Evtuguin D V, et al. The effects of transition metal sulfates on cellulose crystallinity during accelerated ageing of silver fir wood [J]. Cellulose, 2019, 26(4): 2625-2638. [百度学术]
Zakzeski J, Jongerius A L, Weckhuysen B M. Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids [J]. Green Chemistry, 2010, 12(7): 1225-1236. [百度学术]
Shu R, Long J, Yuan Z, et al. Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C [J]. Bioresource Technology, 2015, 179: 84-90. [百度学术]
Besse X, Schuurman Y, Guilhaume N. Reactivity of lignin model compounds through hydrogen transfer catalysis in ethanol/water mixtures [J]. Applied Catalysis B: Environmental, 2017, 209, 265-272. [百度学术]
Gao R, Li Y, Kim H, et al. Selective Oxidation of Lignin Model Compounds [J]. ChemSusChem, 2018, 11(13), 2045-2050. [百度学术]
Rashidi M, Beltramini J N, Martin D. The selective cleavage of lignin aliphatic C—O linkages by solvent-assisted fast pyrolysis [J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 94(3-4): 297-307. [百度学术]
沈江华, 郭元茹, 蒋乃翔, 等. 利用HnXW12O40催化降解碱木质素工艺的研究 [J]. 中国造纸学报, 2009, 24(4): 77-80. [百度学术]
SHEN J H, GUO Y R, JIANG N X, et al. Degradation of Alkaline Lignin Catalyzed by HnXW12O40 [J]. Transactions of China Pulp and Paper, 2009, 24(4): 77-80. [百度学术]
Shen D, Jin W, Gu S. Enhancement of aromatic monomer production from pyrolysis of lignin-related β -O-4 contained model compound [J]. Journal of Analytical and Applied Pyrolysis. 2017, 127: 176-182. [百度学术]
蒋晓燕, 陆 强, 董晓晨, 等. α-O-4型木质素二聚体模型物热解解聚机理 [J]. 生物工程学报, 2015, 31(10): 1512-1519. [百度学术]
JIANG X Y, LU Q, DONG X C, et al. Pyrolytic depolymerization mechanism of a lignin model compound with α-O-4 linkage [J]. Chinese Journal of Biotechnology, 2015, 31(10): 1512-1519. [百度学术]
Hepditch M M, Thring R W. Degradation of solvolysis lignin using Lewis acid catalysts [J]. The Canadian Journal of Chemical Engineering, 2000, 78(1): 226-231. [百度学术]
Huppert G L, Wu B C, Townsend S H, et al. Hydrolysis in Supercritical Water: Identification and Implications of a Polar Transition State [J]. Industrial and Engineering Chemistry Research, 1989, 28(2): 161-165. [百度学术]
Yang L, Li Y, Savage P E. Hydrolytic cleavage of C—O linkages in lignin model compounds catalyzed by water-tolerant Lewis acids [J]. Industrial and Engineering Chemistry Research, 2014, 53(7): 2633-2639. [百度学术]
Kobayashi, Nagayama S, Busujima T. Lewis acid catalysts stable in water. Correlation between catalytic activity in water and hydrolysis constants and exchange rate constants for substitution of inner-sphere water ligands [J]. Journal of the American Chemical Society, 1998, 29(32): 8287-8288. [百度学术]
He J, Lu L, Chen Z, et al. Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases [J]. Journal of Catalysis, 2014, 311(3): 41-51. [百度学术]
Long J, Lou W, Wang L, et al. [C4H8SO3Hmim]HSO4 as an efficient catalyst for direct liquefaction of bagasse lignin: Decomposition properties of the inner structural units [J]. Chemical Engineering Science, 2015, 122: 24-33. [百度学术]
Shu R, Xu Y, Ma L, et al. Controllable production of guaiacols and phenols from lignin depolymerization using Pd/C catalyst cooperated with metal chloride [J]. Chemical Engineering Journal, 2018, 338: 457-464. [百度学术]
Peng C, Chen Q, Guo H, et al. Effects of Extraction Methods on Structure and Valorization of Corn Stover Lignin by a Pd/C Catalyst [J]. ChemCatChem, 2017, 9(6): 1135-1143. [百度学术]
Fan H, Yang Y, Song J, et al. Free-radical conversion of a lignin model compound catalyzed by Pd/C [J]. Green Chemistry, 2015, 17(8): 4452-4458. [百度学术]
朱 媛. 催化氢解与酶解/氧化降解木质素制备单酚类化合物 [D]. 广州: 华南理工大学, 2017. [百度学术]
ZHU Y. Catalytic Hydrogenolysis and Enzymolysis/oxidative Depolymerization of Lignin to Produce Aromatic Monomers [D]. Guangzhou: South China University of Technology, 2017. [百度学术]
刘凌涛, 张 斌, 李 晶, 等. 贵金属催化剂上两步法选择性降解有机溶剂型木质素 [J]. 物理化学学报, 2012, 28(10): 2343-2348. [百度学术]
LIU L T, ZHANG B, LI J, et al. Selective Degradation of Organosolv Lignin over Noble Metal Catalyst in a Two-step Process [J]. Acta Physico-Chimica Sinica, 2012, 28(10): 2343-2348. [百度学术]