摘要
本文从木质素防晒产品和木质素抗老化复合材料两个方面,对木质素在抗紫外线防护领域的相关研究展开了综述,探讨了木质素对复合材料特性如紫外稳定性、力学性能等的影响,并对木质素在抗老化复合材料应用中存在的问题进行了剖析。此外,根据木质素抗紫外线防护机理,对其在抗老化复合材料应用中的前景进行了展望,为木质素高值化开发利用提供参考。
紫外线(UV)是太阳发出的一种电磁辐射,由长波紫外线(UVA)、中波紫外线(UVB)和短波紫外线(UVC)组
木质素广泛存在于植物木质组织中,是世界上储量仅次于纤维素的第二大生物质资源,可广泛应用于建筑、石油、化学、矿业和印染等产业。天然木质素主要存在于植物细胞的次生壁中,约占木本植物绝干质量的27%~32%,占草本植物绝干质量的14%~25%。木质素是由G型、S型、H型3种苯基丙烷单体通过C—O、C—C键等连接而成的三维网状生物大分子物质(见

图1 木质素3种结构单元(芥子醇、松柏醇和对香豆醇)及连接方式
Fig. 1 Three structural units (sinapyl alcohol, coniferyl alcohol, and p-coumaryl alcohol) of lignin and their connection modes
木质素分子中的共轭体系、氢键及其结构中含有的大量苯环、酮基和酚羟基等官能团可赋予木质素一定紫外线防护性能。这些结构和官能团能分别对不同波段的紫外线起到防护作用,使得木质素具有全波段紫外线防护能力,木质素中能够起到紫外防护作用的相关结构及其对应的紫外线吸收波长见

图2 木质素中的相关结构及其对应的紫外线吸收波
Fig. 2 Certain structures in lignin and their corresponding UV absorption wavelengths
木质素分子质量大、生物相容性好且具有一定的光稳定性和抗氧化活性,因此可以代替传统化学防晒剂,解决其易渗入皮肤引起皮肤过敏红疹和皮肤癌等问题。2015年,Qian
随着机理研究的不断深入,发现木质素抗紫外线防护性能包含内在和外在2个因素。内在因素主要归因于芳香环与侧链双键或不饱和基团之间的共轭作用以及酚羟基、酮基等发色基团的抗氧化作用
作为一种全光谱防晒剂,木质素在防晒产品等方面应用潜力巨大。但木质素固有的深色仍是目前限制其防晒产品适用性和可行性的最大障碍。虽然研究人员利用不同的提取方式、化学改性、化学漂白、木质素化学分级、木质素纳米颗粒制备以及添加少量木质素等方式来淡化木质素的颜色,但仍没有完全解决木质素深色带来的应用缺陷,此外化学改性不可避免破坏木质素分子结构导致其防晒性能降低、产量降低、可使用性变差等。因此,对木质素进行脱色并保持其优异的抗紫外线性能仍是当前研究人员面临的最大挑战。
研究人员利用木质素与化学防晒活性成分的协同作用,解决木质素UVA波段紫外线吸收能力相对较差、全光谱紫外线吸收能力有限、颜色深等问题,提高木质素基防晒霜的防晒性能。针对小分子化学防晒成分会渗透到皮肤中对人体健康产生不利影响的问题,Zhou
Padilha
在日化、建材、食品包装等橡胶塑料制品领域也常添加抗紫外线防护材料以解决各种材料和物品老化、食物变质、纸张变黄和农产品光解等问
据报道,Xiong
开发可生物降解的聚合物薄膜材料来缓解“白色污染”和日益严重的环境危机被人们寄予厚望。这些聚合物薄膜材料包括PVA、聚乳酸(PLA)、聚(己二酸丁二醇酯-对苯二甲酸乙二醇酯)(PBAT)、聚丁二醇酯(PBS)和聚羟基烷酸酯(PHA)等。然而,由于PVA等可生物降解聚合物具有典型的强度不均匀和成本相对较高等缺点,导致这些材料无法在包装和农业领域进行大规模应用。
近年来,纤维素基材料在包装材料中显示出巨大应用潜力,但许多纤维素基薄膜材料的耐水性和光降解性较差。受天然木材结构的启发,研究人员开发了纤维素/木质素复合膜,其表现出明显改善的紫外线屏蔽和防水性能。Yang
综上所述,木质素与纤维素复合的确能拓宽这两大生物质资源的开发和应用范围,对可持续发展具有重要意义。然而,改善木质素与纤维素之间的界面相容性和提高木质素/纤维素复合膜机械性能的相关研究还不完善。尽管部分木质素/纤维素复合膜的强度很高,但断裂伸长率较低、韧性较差,如何在不牺牲强度的条件下提高韧性仍需进一步探
风化和紫外辐射等会导致用于装修涂料的清漆光泽损失、开裂和剥落。通过添加抗氧化、抗紫外线成分可减缓材料的光化学反
截至目前,关于木质素复合材料的光热性能研究仍然较少。Liu
越来越多的研究表明,木质素在很多材料领域都展现出独特的性能,不但可提高复合材料特定性能,而且提供黏附性、抗菌性、可生物降解性等附加性能。在聚多巴胺的邻苯二酚结构具有优异黏附性的启发下,Qian
虽然关于木质素以共混方式加入到复合高分子材料中,以提高材料抗紫外线、抗老化性能的应用研究已十分广泛,但木质素作为高分子材料的功能性助剂的研究却鲜有报道。这是由于一方面,木质素的化学结构根据其原料与获取形式不同而差异显著,至今还没有完善的结构模型理论;另一方面,缺乏关于木质素作为助剂的性能评估体系。
作为生物质精炼和化学法制浆工段的副产品,将木质素作为广谱(长波及中波紫外线)防晒霜中的天然紫外线防护成分具有巨大的应用潜力。木质素基防晒霜具有优异的防晒性能,通过改性和尺寸调控等手段可进一步提高木质素的防晒性能,但木质素与化学防晒活性成分之间的协同作用机理仍需更深入的探究。保持木质素优异抗紫外线防护性能的同时,使木质素基防晒产品达到大众审美可接受的颜色仍然是研究人员面临的挑战。此外,为了实现木质素基防晒霜的商业化,需对其细胞毒性进行广泛调研,以确保其对人类健康和环境的安全。将木质素添加到聚乳酸等高分子聚合物中可制得具有良好透明度的紫外线防护材料,并具有高机械性能、光稳定性、抗老化、抗菌等附加性能,但木质素与其他助剂协同体系及其作用机理仍需深入研究,提高复合材料抗老化性能的同时保持材料优异的力学性能是主要研究方向之一,这对进一步提高木质素基紫外线防护材料的性能具有重要的意义。总之,在可持续发展理念(碳达峰、碳中和)下,利用木质素与天然可降解聚合物(如纤维素、半纤维素、明胶、壳聚糖等)制备具有特殊性能的复合材料具有广阔的应用前景。
参考文献
Tran M H, Phan D P, Lee E Y. Review on lignin modifications toward natural UV protection ingredient for lignin-based sunscreens[J]. Green Chemistry, 2021, 23(13): 4633-4646. [百度学术]
Nichols J A, Katiyar S K. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms[J]. Archives of Dermatological Research, 2010, 302(2): 71-83. [百度学术]
Sadeghifar H, Ragauskas A. Lignin as a UV Light Blocker—A Review[J]. Polymers, 2020, 12(5): 1134-1143. [百度学术]
Bernstein E F, Sarkas H W, Boland P, et al. Beyond sun protection factor: An approach to environmental protection with novel mineral coatings in a vehicle containing a blend of skincare ingredients[J]. Journal of Cosmetic Dermatology, 2020, 19(2): 407-415. [百度学术]
ZHANG H, LIU X X, FU S Y, et al. Fabrication of light-colored lignin microspheres for developing natural sunscreens with favorable UV absorbability and staining resistance [J]. Industrial & Enginee⁃ring Chemistry Research, 2019, 58(31): 13858-13867. [百度学术]
Moustafa H, El-Sayed S, Youssef A M. Synergistic impact of cumin essential oil on enhancing of UV-blocking and antibacterial activity of biodegradable poly(butylene adipate-co-terephthalate)/clay platelets nanocomposites[J]. Journal of Thermoplastic Composite Materials, 2021, DOI: 10.1177/0892705721989771. [百度学术]
Sander M, Sander M, Burbidge T, et al. The efficacy and safety of sunscreen use for the prevention of skin cancer[J]. Canadian Medical Association Journal, 2020, 192(50): 1802-1808. [百度学术]
Korać R, Khambholja K. Potential of herbs in skin protection from ultraviolet radiation[J]. Pharmacognosy Reviews, 2011, 5(10):164-173. [百度学术]
Kockler J, Oelgemöller M, Robertson S, et al. Photostability of sunscreens[J]. Journal of Photochemistry & Photobiology C: Photochemistry Reviews, 2012, 13(1): 91-110. [百度学术]
Piccinino D, Capecchi E, Tomaino E, et al. Nano-structured lignin as Green Antioxidant and UV Shielding Ingredient for Sunscreen Applications[J]. Antioxidants, 2021, 10(2): 274-293. [百度学术]
刘学, 李淑君, 刘守新, 等. 木质素纳米颗粒的制备及其功能化应用研究进展[J]. 生物质化学工程, 2020, 54(5): 53-65. [百度学术]
LIU X, LI S J, LIU S X, et al. Research Progress in Preparation and Functional Application of Lignin-based Nanoparticles[J]. Biomass Chemical Engineering, 2020, 54(5): 53-65. [百度学术]
ZHAO W W, XIAO L P, SONG G Y, et al. From lignin subunits to aggregates: insights into lignin solubilization[J]. Green Chemistry, 2017, 19: 3272-3281. [百度学术]
SUN H, WANG R, WANG G H, et al. Evaluation and Improvement of Antioxidant Activity of Water-soluble Lignin Products from Steam Explosion Processing of Corn Stalk[J]. Paper and Biomaterials, 2021, 6(3): 20-29. [百度学术]
YU J, LI L, QIAN Y, et al. Facile and Green Preparation of High UV-Blocking Lignin/Titanium Dioxide Nanocomposites for Develo⁃ping Natural Sunscreens[J]. Industrial & Engineering Chemistry Research, 2018, 57(46): 15740-15748. [百度学术]
刘邦粹, 李兵云, 付时雨, 等. 木质素不同级分的结构与其紫外线吸收能力的研究[J]. 中国造纸, 2021, 40(12): 23-30. [百度学术]
LIU B C, LI B Y, FU S Y, et al. Study on Structures and Ultraviolet Absorption Capacity of Fractionated Lignin[J]. China Pulp & Paper, 2021, 40(12): 23-30. [百度学术]
WANG J Y, QIAN Y, LI L B, et al. Atomic Force Microscopy and Molecular Dynamics Simulations for Study of Lignin Solution Self-Assembly Mechanisms in Organic-aqueous Solvent Mixtures[J]. ChemSusChem, 2020, 13(17): 4420-4427. [百度学术]
Paulsson M, Parkas J. Review:Light-induced yellowing of ligninocellulosic pulps-mechanism and preventive methods[J]. BioResources, 2012, 7(4): 5995-6040. [百度学术]
QIAN Y, QIU X Q, ZHU S P. Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens[J]. Green Chemistry, 2014, 17(1): 320-324. [百度学术]
QIAN Y, QIU X Q, ZHU S P. Sunscreen Performance of Lignin from Different Technical Resources and Their General Synergistic Effect with Synthetic Sunscreens[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(7): 4029-4035. [百度学术]
WANG J Y, DENG Y H, QIAN Y, et al. Reduction of lignin color via one-step UV irradiation[J]. Green Chemistry, 2016, 18(3): 695-699. [百度学术]
ZHANG W B, ZHANG Y, LIANG H Y, et al. High bio-content castor oil based waterborne polyurethane/sodium lignosulfonate composites for environmental friendly UV absorption application[J]. Industrial Crops and Products, 2019, 142: 111836-111836. [百度学术]
LIN M S, YANG L J, ZHANG H, et al. Revealing the structure-activity relationship between lignin and anti-UV radiation[J]. Industrial Crops and Products, 2021, 174:114212-114221. [百度学术]
Arruda M, Alves S, Filho I, et al. Characterization of a lignin from Crataeva tapia leaves and potential applications in medicinal and cosmetic formulations[J]. International Journal of Biological Macromolecules, 2021, 180(189): 286-298. [百度学术]
瞿欣, 赵小敏, 陈志华, 等. 防晒剂光稳定性和防晒增效作用的机理研究[J]. 日用化学品科学, 2014, 38(12): 23-28. [百度学术]
ZHAI X, ZHAO X M, CHEN Z H, et al. Study on the photostabilization and SPF boosting of bemotrizinol insunscreen[J]. Detergent & Cosmetics, 2014, 38(12): 23-28. [百度学术]
WANG B, SUN D, WANG H M, et al. Green and Facile Preparation of Regular Lignin Nanoparticles with High Yield and Their Natural Broad-Spectrum Sunscreens[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2658-2666. [百度学术]
LIU C Y, SI C L, WANG G H, et al. A novel and efficient process for lignin fractionation in biomass-derived glycerol-ethanol solvent system[J]. Industrial Crops and Products, 2018, 111: 201-211. [百度学术]
SHI C, ZHANG S, WANG W Y, et al. Preparation of Highly Reactive Lignin by Ozone Oxidation: Application as Surfactants with Antioxidant and Anti-UV Properties[J]. ACS Sustainable Chemistry & Engineering, 2019, 8(1): 22-28. [百度学术]
吴丽冉, 王营超, 王强, 等. 木质素纳米颗粒的可控制备及应用进展[J]. 中国造纸, 2021, 40(4): 73-84. [百度学术]
WU L R, WANG Y C, WANG Q, et al. Controllable Preparation of Lignin Nanoparticle and Its Application[J]. China Pulp & Paper, 2021, 40(4): 73-84. [百度学术]
Piccinino D, Capecchi E, Delfino I, et al. Green and Scalable Preparation of Colloidal Suspension of Lignin Nanoparticles and Its Application in Eco-friendly Sunscreen Formulations[J]. ACS Omega, 2021, 6: 21444-21456. [百度学术]
Guilhen A, Gadioli R, Fernandes F C, et al. High-density green polyethylene biocomposite reinforced with cellulose fibers and using lignin as antioxidant[J]. Journal of Applied Polymer Science, 2017, 134 (35): 45219-45229. [百度学术]
ZHOU Y, HAN Y M, LI G Y, et al. Preparation of Targeted Lignin-Based Hollow Nanoparticles for the Delivery of Doxorubicin[J]. Nanomaterials, 2019, 9(2): 188-200. [百度学术]
Widsten P. Lignin-Based Sunscreens-State-of-the-Art, Prospects and Challenges[J]. Cosmetics, 2020, 7(4): 85-92. [百度学术]
ZHOU Y J, QIAN Y, WANG J Y, et al. Bioinspired Lignin-Polydopamine Nanocapsules with Strong Bioadhesion for Long-Acting and High-Performance Natural Sunscreens[J]. Biomacromolecules, 2020, 21(8): 3231-3241. [百度学术]
Padilha C E D, Nogueira C D, Oliveira Filho M A, et al. Valorization of cashew apple bagasse using acetic acid pretreatment: Production of cellulosic ethanol and lignin for their use as sunscreen ingredients[J]. Process Biochemistry, 2020, 91: 23-33. [百度学术]
ZHANG H, LIU X X, FU S Y, et al. High-value utilization of kraft lignin: Color reduction and evaluation as sunscreen ingredient[J]. International Journal of Biological Macromolecules, 2019, 133: 86-92. [百度学术]
陈晓康, 宁培森, 王玉民, 等. 提高聚氨酯耐紫外老化性的研究进展[J]. 热固性树脂, 2009, 24(6): 44-49. [百度学术]
CHEN X K, NING P S, WANG Y M, et al. Research advances in improving ultraviolet ageing resistance of polyurethanes[J]. Thermosetting Resin, 2009, 24(6): 44-49. [百度学术]
万玉玲, 胡雨璐, 许杜鑫, 等. 纤维素/木质素微球抗紫外薄膜制备与性能研究[J].材料工程, 2021, 49(7): 56-63. [百度学术]
WAN Y L, HU Y L, XU D X, et al. Fabrication and characterization of cellulose/lignin microspheres films with UV-blocking[J]. Journal of Materials Engineering, 2021, 49(7): 56-63. [百度学术]
WANG H M, YUAN T Q, SONG G Y, et al. Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world[J]. Green Chemistry, 2021, 23: 3790-3817. [百度学术]
ZHANG Y, NAEBE M. Lignin: A Review on Structure, Properties, and Applications as a Light-Colored UV Absorber[J]. ACS Sustai⁃nable Chemistry & Engineering, 2021, 9(4): 1427-1442. [百度学术]
XIONG F Q, WU Y Q, LI G Y, et al. Transparent Nanocomposite Films of Lignin Nanospheres and Poly(vinyl alcohol) for UV-Absorbing[J]. Industrial & Engineering Chemistry Research, 2018, 57 (4): 1207-1212. [百度学术]
ZHANG X, LIU W F, YANG D J, et al. Biomimetic Supertough and Strong Biodegradable Polymeric Materials with Improved Thermal Properties and Excellent UV-Blocking Performance[J]. Advanced Functional Materials, 2019, 29(4): 1806912-1806922. [百度学术]
WANG H, TANG X, ARVANITIS M A, et al. Colloidal lignin nanoparticles from acid hydrotropic fractionation for producing tough, biodegradable, and UV blocking PVA nanocomposite[J]. Industrial Crops and Products, 2021, 168(35): 113584-113596. [百度学术]
PARIT M, DU H, ZHANG X Y, et al. Flexible, Transparent, UV-Protecting, Water-Resistant Nanocomposite Films Based on Polyvinyl Alcohol and Kraft Lignin-Grafted Cellulose Nanofibers[J]. ACS Applied Polymer Materials, 2022, 4(5): 3587-3597. [百度学术]
Yang F, Xu L, Dai G, et al. Conversion of Cellulose and Lignin Residues into Transparent UV-Blocking Composite Films[J]. Mo⁃lecules, 2022, 27 (5):1-12. [百度学术]
SHAO H, ZHANG Y, PAN H, et al. Preparation of flexible and UV-blocking films from lignin-containing cellulose incorporated with tea polyphenol/citric acid[J]. International Journal of Biological Macromolecules, 2022, 207(28): 917-926. [百度学术]
刘亮先. 木质素/纤维素复合薄膜的制备与性能研究[D]. 哈尔滨: 东北林业大学, 2021. [百度学术]
LIU L X. Study on the Preparation and Properties of Lignin/Cellulose Composite Film[D]. Harbin: Northeast Forestry University, 2021. [百度学术]
Emilia-Adela S, Tomasz K, Barbara L, et al. Some Coating Properties of Black Alder Wood as a Function of Varnish Type and Application Method[J]. BioResources, 2016,11(3): 7580-7594. [百度学术]
TAN S Y, LIU D, QIAN Y, et al. Towards better UV-blocking and antioxidant performance of varnish via additives based on lignin and its colloids[J]. Holzforschung, 2019, 73(5): 485-491. [百度学术]
李新. 木质素基聚氨酯改性沥青防水涂盖料的制备及性能研究[J]. 新型建筑材料, 2018, 45(8): 151-154. [百度学术]
LI X. The preparation and performance study on lignin-based polyurethane modified asphalt waterproof coating[J]. New Building Materials, 2018, 45(8): 151-154. [百度学术]
周大纲, 谢鸽成. 塑料老化与防老化技术[M]. 北京: 中国轻工业出版社, 1998. [百度学术]
ZHOU D G, XIE G C. Plastic aging and anti-aging technology[M]. Beijing: China Light Industry Press, 1998. [百度学术]
Schmidt J A, Rye C S, Gurnagul N. Lignin inhibits autoxidative degradation of cellulose[J]. Polymer Degradation and Stability, 1995, 49(2): 291-297. [百度学术]
SUN H, WANG R, WANG G H, et al. Evaluation and Improvement of Antioxidant Activity of Water-soluble Lignin Products from Steam Explosion Processing of Corn Stalk[J]. Paper and Biomaterials, 2021, 6(3): 20-29. [百度学术]
LIU J R, MORENO A, CHANG J, et al. Fully Biobased Photothermal Films and Coatings for Indoor Ultraviolet Radiation and Heat Management[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12693-12702. [百度学术]
QIAN Y, ZHOU Y J, LU M J, et al. Direct Construction of Catechol Lignin for Engineering Long Acting Conductive, Adhesive, and UV-Blocking Hydrogel Bioelectronics[J]. Small Methods, 2021, 5(5): 2001311-2001320. [百度学术]
Lee H, Scherer N F, Messersmith P B. Single-molecule mechanics of mussel adhesion[J]. Proc Nat Acad Sci, 2006, 103(35): 12999-13003. [百度学术]
PENG W W, HAN L, HUANG H L, et al. A direction-aware and ultrafast self-healing dual network hydrogel for a flexible electronic skin strain sensor[J]. Journal of Materials Chemistry A, 2020, 8: 26109-26118. [百度学术]
PENG Y, WANG W, CAO J Z. Preparation of Lignin-Clay Complexes and Its Effects on Properties and Weatherability of Wood Flour/Polypropylene Composites[J]. Industrial & Engineering Che⁃mistry Research, 2016, 55(36): 9657-9666. [百度学术]