摘要
本研究合成了松伯醇葡萄糖苷-[α
大量研究发现碱法制浆过程中植物纤维原料中的部分木质素-碳水化合物复合体(LCC)连接键相当稳定,未漂浆中的残余木质素与碳水化合物之间存在稳定的化学键连
C
上述仿酶降解体系是研究深度脱除木质素和LCC的有效途径,但由于木质素大分子和碳水化合物本身的结构相当复
在本研究中,在银杏植株的培育过程中加入
银杏植株购自武汉江夏苗圃。
松伯醇葡萄糖苷-[α
水杨醛、N-甲基咪唑、吡啶购自麦克林试剂公司,分析纯;乙酸、甲苯、盐酸、氢氧化钠、硫化钠、N,N二甲基甲酰胺、二甲基亚砜(DMSO)、醋酸酐、五水硫酸铜、过氧化氢(30%)、无水乙醇、乙二胺、氯化锂购自国药集团化学试剂有限公司,分析纯。

图1 生长中的银杏植株的同位素标记
Fig. 1 Isotope labeling of a growing tree of Ginkgo biloba L.
称取一定量的硫酸盐浆用PFI磨打浆至游离度为300 mL,加入纤维素酶、半纤维素酶以及乙酸-乙酸钠缓冲溶液(pH值=4.6),加入3滴甲苯做保护剂,45 ℃下在水浴震荡反应器中培养48 h,离心分离沉淀后再经冷冻干燥得到CEL,经过酶处理后大幅度降低了样品中的半纤维素含量并提高了半纤维素的溶出

图2 粗CEL的制备
Fig. 2 Preparation of crude CEL

图3 CEL的纯化
Fig. 3 Purification of CEL
Cu(Salen)配合物的合成路线如

图4 Cu(Salen)配合物的合成路线
Fig. 4 Synthesis route of Cu(Salen) complex
添加50 mL N,N-二甲基甲酰胺和13.4 g C16H16O2N2于烧瓶内,60 ℃下搅拌至固体完全溶解后滴加15 mL硫酸铜溶液,加热1 h。冷却后将反应液缓慢滴加至40 mL蒸馏水中析出沉淀,过滤后用乙醇溶液反复洗涤沉淀。最后经真空干燥得到墨绿色晶体Cu(Salen)。
Cu(Salen)配合物的X射线衍射(XRD)谱图如

图5 Cu(Salen)配合物的XRD谱图
Fig. 5 XRD spectra of Cu(Salen) complexes
A:实验样品;B:标准样品
在100 mL的锥形瓶中加入20 mg吡啶、20.4 mg硫酸铜、0.6 mL H2O2、10 mL蒸馏水及300 mg纯化后的CEL,在55 ℃下水浴振荡2 h,离心分离不溶物并用蒸馏水洗涤,冷冻干燥,得到GIF型仿酶降解产物GIF-CEL。
在100 mL的锥形瓶中加入7.5 mL吡啶、5.4 mg Cu(Salen)配合物、300 mg纯化后的CEL、0.45 mL H2O2、8 mL蒸馏水,在70 ℃下水浴加热2.5 h,反应结束后离心分离不溶物,蒸馏水充分洗涤后冷冻干燥,得到Cu(Salen)型仿酶降解产物Cu(Salen)-CEL。
仿酶处理后,CEL组分中部分易降解的木质素被溶出,剩余的残余物中含有结构较稳定且分子质量较高的木质素及LCC组分,其溶解性较差,需要对其进行乙酰化处
凝胶渗透色谱法是测定木质素分子质量的一种常用方
从
样品 | Mw | Mn | Mw/Mn |
---|---|---|---|
CEL |
3.03×1 |
1.57×1 | 1.93 |
Ac-GIF-CEL |
3.58×1 |
2.05×1 | 1.75 |
Ac-Cu(Salen)-CEL |
2.45×1 |
1.46×1 | 1.68 |
对经α

图6 银杏Ac-GIF-CEL样品
Fig. 6
a: α

图7 银杏Ac-GIF-CEL样
Fig. 7
采用Cu(Salen)型仿酶体系处理CEL,对降解后残余木质素

图8 银杏Ac-Cu(Salen)-CEL样品
Fig. 8
a: α
化学位移62.16(No. 12)的信号主要来自木质素β-1连接结构上的C

图9 银杏Ac- Cu(Salen)-CEL样品
Fig. 9
为了深入研究硫酸盐浆中残余木质素的仿酶降解机理,本研究用松伯醇葡萄糖苷-[α
3.1 GIF型和Cu(Salen)型仿酶体系降解CEL样品前后的分子质量变化显示,两种仿酶体系处理后残余物的分子质量均有所减少,GIF型仿酶体系处理后CEL的Mw从3.03×1
3.2
3.3
参 考 文 献
谢益民, 蒋 晨, 刘雁超. 木素脱氢聚合物-葡萄糖复合体形成机理的研究[J]. 中国造纸, 2020, 39(4): 27-33. [百度学术]
XIE Y M, JIANG C, LIU Y C. Study on Formation Mechanism of Lignin Dehydrogenation Polymer-Glucose Complex[J]. China Pulp & Paper, 2020, 39(4): 27-33. [百度学术]
TANBDA H, NAKANO J, HOSOYA S, et al. Stability of α-Ether Type Model Compounds During Chemical Pulping Processes[J]. Journal of Wood Chemistry and Technology, 1987, 7(4): 485-497. [百度学术]
IVERSEN T, WÄNNSTRÖM S. Lignin-carbohydrate Bonds in A Residual Lignin Isolated from Pine Kraft Pulp[J]. Holzforschung, 1986(40): 19-22. [百度学术]
师莉升, 姚双全, 王 成, 等. 木素模型物及其在制浆中的应用研究进展[J]. 中国造纸, 2018, 37(9): 53-58. [百度学术]
SHI L S, YAO S Q, WANG C, et al. A Review on the Application of Lignin Model Compounds in Pulping Research[J]. China Pulp & Paper, 2018, 37(9): 53-58. [百度学术]
肖娅楠, 周学飞. 仿酶催化木素降解研究进展[J]. 纤维素科学与技术, 2021,29(1) :32-39. [百度学术]
XIAO Y N, ZHOU X F. Progress in Lignin Degradation by Biomimetic Catalysts[J]. Journal of Cellulose Science and Technology, 2021, 29(1): 32-39. [百度学术]
邓日灵, 周学飞, 朱正良. Co-Salen仿酶系统降解木素模型物的研究机理[J]. 造纸科学与技术, 2008(3): 13-17. [百度学术]
DENG R L, ZHOU X F, ZHU Z L. Co-Salen Biomimetic Degradation Mechanism of Polymeric Guaiacyl-type Lignin Model Compound[J]. Paper Science and Technology, 2008(3): 13-17. [百度学术]
马雪梅, 周学飞. 氧化剂和反应条件对漆酶与仿酶一锅法降解木素的影响[J]. 纤维素科学与技术, 2019, 27(4): 8-17. [百度学术]
MA X M, ZHOU X F. Study on Oxidants and Reaction Conditions Used in Lignin Degradation by One-pot Method Combing Laccase and Biomimetic Complex[J]. Journal of Cellulose Science and Technology, 2019, 27(4): 8-17. [百度学术]
BARTON D, DOLLER D. Relevance of Gif Chemistry to Enzyme Mechanisms[J]. Applications of Enzyme Biotechnology, 1991: 87-98. [百度学术]
吴 明, 冯启明, 马海茼, 等. 漆酶在制浆造纸中的应用研究进展[J]. 中国造纸学报, 2019, 34(2): 66-71. [百度学术]
WU M, FENG Q M, MA H T, et al. Application of Laccase in Pulp and Paper Industry[J]. Transactions of China Pulp and Paper, 2019, 34(2): 66-71. [百度学术]
BARTON D, GASTIGER M, MOTHERWELL W. A New Procedure for the Oxidation of Saturated Hydrocarbons[J]. Journal of the Chemical Society Communications, 1983, 1(1): 41-43. [百度学术]
贾艳迪, 周学飞, 朱正良, 等. 硫酸盐法竹浆漂白GIF仿酶预处理最佳条件的确定[J]. 中国造纸, 2006, 25(7): 35-37. [百度学术]
JIA Y D, ZHOU X F, ZHU Z L, et al. Bamboo Pulp GIF Biomimetic Bleaching (I): Optimum Condition and Factor Analysis of Biomimetic Pretreatment[J]. China Pulp & Paper, 2006, 25(7): 35-37. [百度学术]
朱正良, 周学飞, 贾艳迪,等. 竹子木素在GIF仿酶漂白中的降解机理[J]. 纤维素科学与技术, 2007, 15(1): 10-15. [百度学术]
ZHU Z L, ZHOU X F, JIA Y D, et al. Mechanism of Bamboo Lignin Degradation in GIF Biomimetic Bleaching[J]. Journal of Cellulose Science and Technology. 2007, 15(1): 10-15. [百度学术]
贾艳迪, 周学飞, 朱正良. 竹浆GIF仿酶漂白木质素降解产物气相色谱-质谱解析[J]. 林产化学与工业, 2008, 28(5): 93-99. [百度学术]
JIA Y D, ZHOU X F, ZHU Z L. Interpretation on Degraded Products of Lignin during GIF Biomimetic Bleaching of Bamboo Pulp by GC-MS[J]. Chemistry and Industry of Forest Products, 2008, 28(5): 93-99. [百度学术]
KAWAI S, OHASHI H. Degradation of Lignin Substructure Model Compounds by Copper (Ⅱ)-Amine Complex as a Model Catalyst of Fungal Laccase[J]. Holzforschung, 1993, 47(2): 97-102. [百度学术]
CALL H P, MÜCKE. History, Overview and Applications of Mediated Lignolytic Systems, Especially Laccase-mediator-systems (Lignozym-process)[J]. Journal of Biotechnology, 1997, 53(2/3): 163-202. [百度学术]
孙媛芳, 谢益民, 高洪贵. 磨木木素在Cu-Salen型仿酶降解体系中的变化[J]. 中华纸业, 2008, 29(22): 40-44. [百度学术]
SUN Y F, XIE Y M, GAO H G. The Changes of Milled wood Lignin in Cu-Salen System of Biomimetic Degradation[J]. China Pulp and Paper Industry, 2008, 29(22): 40-44. [百度学术]
杨志勇. 马尾松磨木木素在硫酸盐法蒸煮过程中的降解及缩合[J]. 中国造纸学报, 2017, 32(3): 11-15. [百度学术]
YANG Z Y. Degradation and Condensation of MWL from Pinus massoniana Lamb during Kraft Cooking[J]. Transactions of China Pulp and Paper, 2017, 32(3): 11-15. [百度学术]
陈燕秋, 侯 捷, 雷 雯, 等. 气相色谱-质谱联用法检
CHEN Y Q, HOU J, LEI W, et al. Determination of Isotope Abundance of
杨志勇, 谢益民, 周 燕. 利用酚型木素模型物研究硫酸盐法蒸煮过程中LCC的形成[J]. 中国造纸学报, 2014, 28(1): 6-10. [百度学术]
YANG Z Y, XIE Y M, ZHOU Y. The Formation of LCC during Kraft Pulping[J]. Transactions of China Pulp and Paper, 2014, 28(1): 6-10. [百度学术]
XIE Y, LIU Y, JIANG C, et al. The Existence of Cellulose and Lignin Chemical Connections in Ginkgo Traced by
ZHANG K, LIU Y, CUI S, et al. Elucidation of the Structure of Lignin-Carbohydrate Complexes in Ginkgo CW-DHP by
GIERER J. Chemical Sspects of Kraft Pulping[J]. Wood Science and Technology, 1980, 14(4): 241-266. [百度学术]
王淑宏. 农业水培技术的特点与应用[J]. 种子科技, 2020, 38(18): 60-61. [百度学术]
WANG S H. Characteristics and Application of Agricultural Hydroponic Technology[J]. Seed Science and Technology, 2020, 38(18): 60-61. [百度学术]
李 镇, 刘秋娟. 利于提取木素的两段硫酸盐法蒸煮技术的研究[J]. 中国造纸, 2019, 38(4): 8-14. [百度学术]
LI Z, LIU Q J. Study on Two-stage Kraft Pulping Suitable for Lignin Extraction from Black Liquor[J]. China Pulp & Paper, 2019, 38(4): 8-14. [百度学术]
房桂干, 刘姗姗, 沈葵忠, 等. 杨木废弃物湿氧化预处理提高酶解效率的工艺研究[J]. 中国造纸, 2015, 34(1): 6-12. [百度学术]
FANG G G, LIU S S, SHEN K Z, et al. Pretreatment of Poplar Wood Residues Using Wet Oxidation to Enhance Enzymatic Digestibility[J]. China Pulp & Paper, 2015, 34(1): 6-12. [百度学术]
CHANG H M, COWLING E B, BROWON W. Comparative Studies on Cellulolytic Enzyme Lignin and Milled Wood Lignin of Sweetgum and Spruce[J]. Holzforschung, 1975, 29(5): 153-159. [百度学术]
LIN S Y, DENCE C W. Methods in Lignin Chemistry[M]. Springer Series in Wood Science, 1992. [百度学术]
BALAKSHIN M Y, CAPANEMAE A, CHEN, et al. Elucidation of the Structures of Residual and Dissolved Pine Kraft Lignins Using an HMQC NMR Technique[J]. Journal of Agricultural and Food Chemistry, 2003, 51(21): 6116-6127. [百度学术]
樊能廷, 任建南, 孙福生. 英汉精细化学品辞典[M]. 北京: 北京理工大学出版社, 1994. [百度学术]
FAN N T, REN J N, SUN F S. English and Chinese Dictionary of Fine Chemicals[M]. Beijing: Beijing institute of Technology Press, 1994. [百度学术]
DU X Y, PEREZ-BOADA M, FERNÁNDEZ C, et al. Analysis of Lignin-Carbohydrate and Lignin-Lignin Linkages after Hydrolase Treatment of Xylan-Lignin, Glucomannan-Lignin and Glucan-Lignin Complexes from Spruce[J]. Wood Planta, 2014, 239(5): 1079-1090. [百度学术]
DEUS C, FRIEBOLIN H, SIEFERT E. Partiell acetylierte Cellulose-Synthese und Bestimmung der Substituentenverteilung mit Hilfe
NISHIDAY, OHRUIH, MEGURO H.
刘铭祥, 魏鹏月. 用凝胶色谱法研究木素的分子量分布及其应用[J]. 中国造纸, 1988, 7(5): 49-53. [百度学术]
LIU M X, WEI P Y. Studies on the Molecular Weight Distribution of Lignin through Gel Permeation Chromatography(GPC)[J]. China Pulp & Paper, 1988, 7(5): 49-53. [百度学术]
XIE Y, YASUDA S, WU H, et al. Analysis of the Structure of Lignin-Carbohydrate Complexes by the Specific
周燕, 谢益民, 杨志勇, 等. 硫酸盐法蒸煮过程中马尾松LCC的变化[J]. 中国造纸学报, 2007, 22(2): 8-12. [百度学术]
ZHOU Y, XIE Y M, YANG Z Y, et al. The Change of LCC in Pinus Massoniana Lamb during Kraft Pulping[J]. Transactions of China Pulp and Paper, 2007, 22(2): 8-12. [百度学术]
XIE Y, TERASHIMA N. Selective Carbon 13 Enrichment of Side Chain Carbons of Ginkgo Lignin Traced by Carbon 13 Nuclear Magnetic Resonance[J]. Plant Physiology and Biochemistry, 1994, 32(2): 243-249. [百度学术]
BALAKSHIN M, CAPANEMA E, GRACZ H, et al. Quantification of Lignin-carbohydrate Linkages with High-resolution NMR Spectroscopy[J]. Planta, 2011, 233(6): 1097-1110. [百度学术]
欧国隆, 谢益民, 赵华平, 等. β-O-4型木素模型化合物的合成及其在GIF型仿酶降解体系中的变化(I)[J]. 中国造纸学报, 2001, 16(2): 32-38. [百度学术]
OU G L, XIE Y M, ZHAO H P, et al. Synthesis of a β-O-4 type Lignin Model Compound and Its Degradation with GIF System[J]. Transactions of China Pulp and Paper, 2001, 16(2): 32-38. [百度学术]
HIKICHI K, KAKUTA Y, KATOH T.
任颖, 谢益民, 乐 喜, 等. 漆酶与Fe-CA/H2O2仿酶作用下麦草浆中多糖组分的降解[J]. 造纸科学与技术. 2015, 34(4): 64-68. [百度学术]
REN Y, XIE Y M, LE X, et al. Degradation of Polysaccharide Components in Wheat Straw Pulp by Laccase/ABTS System and Fe-CA/H2O2 Biomimetic System[J]. Paper Science and Technology, 2015, 34(4): 64-68. [百度学术]
顾瑞军, 谢益民. 木素——碳水化合物复合体的形成肌理及化学结构的研究(I)——综纤维素存在下DHP的合成[J].造纸科学与技术, 2001, 20(5): 1-6. [百度学术]
GU R J, XIE Y M. Studies on Lignin and Carbohydrate Complex of Monolignols (I)Synthesized DHP from Holocellulose and Coniferins[J]. Paper Science & Technology, 2001, 20(5): 1-6. [百度学术]
KRINGSTAD K P, MÖRCK R.
杨海涛, 郑 兴, 姚 兰, 等. 同位素标记法用于植物纤维中LCC蒸煮过程中结构变化的研究[J]. 化工学报, 2013, 64(3): 1069-1075. [百度学术]
YANG H T, ZHENG X, YAO L, et al. Tracking Structural Change of LCC in Plant by Ssotopic Tracer Technique[J]. Journal of Chemical Industry and Engineering, 2013, 64(3): 1069-1075. [百度学术]
RÍO D, JOSÉ C, PRINSEN P, et al. Lignin-carbohydrate Complexes from Sisal (Agave sisalana) and Abaca (Musa textilis): Chemical Composition and Structural Modifications during the Ssolation Process[J]. Planta, 2016, 243(5): 1143-1158. [百度学术]