摘要
利用层层自组装法制备天然高分子功能材料,具有操作简单、反应条件温和、壳层结构易调等特点,近年来已成为热点研究方向之一。基于此,本综述总结了利用淀粉、壳聚糖、海藻酸钠、明胶、纤维素等天然高分子,通过层层自组装法制备单细胞壳层的策略,讨论了自组装过程对细胞活性、pH耐受性等性能的影响,为固定化细胞在生物医学领域中的应用提供参考。
近年来,细胞在生物医学领域的应用成为研究热点。但由于应用环境的复杂性,对于需要保持活性才能发挥功效的细胞而言,如何保证输送过程和应用环境中的细胞活性是亟需解决的问题。研究人员从自然界细菌内生长孢子和植物休眠种中得到启发——外表的孢子外壳或种皮可以为内部细胞提供稳定的保护作用以抵御不利的环境条件,即隐生现象,并由此提出了“壳内细胞”结构,即“人工孢子”,一类由单细胞包埋策略产生的细胞混合新体
单细胞包埋方法包括生长法和沉积法。生长法是利用自由基聚合的原理,在细胞表面逐渐“生长”出聚合物壳层,从而实现单细胞包埋的方法;聚合方法主要包括原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)和可逆加成断裂链转移聚合(Reversible Addition-fragmentation Chain Transfer Polymerization,RAFT)等受控自由基聚
聚电解质一般通过LBL自组装形成纳米层结构,经与其带相反电荷的物质络合,所得壳层通常表现出更好的机械完整性,且具有一定牢固性、耐久性及选择渗透
随着对聚电解质LBL自组装壳层的深入研究,可包埋细胞的种类也随之增加,包括酵母、细菌、益生菌等。由于合成聚电解质的细胞毒性较强,天然聚电解质凭借其易获得、易降解、低细胞毒性和高生物相容性等优势,逐渐成为单细胞包埋的首选材
LBL自组装是利用静电、氢键等相互作用,在基底表面形成聚合物薄膜或得到聚合物壳层(以下统称LBL层)的方法。在该方法中,2种带相反电荷的聚电解质之间的静电相互作用是构建LBL层的主要作用机制。由于基底表面具有电负性,可以在其表面沉积相反电荷作为第1层,然后交替沉积聚阳离子层、聚阴离子层,直到聚合物纳米涂层达到所需层数;在每一层沉积后,需要洗涤去除未结合的聚电解质。此外,氢键作用也可以用于构筑LBL层。对基于氢键协同静电机制的多层自组装过程,第1层聚合物可通过与基底表面之间的静电和氢键作用沉积,然后再通过层与层之间的静电和氢键作用沉积其他聚合
将LBL自组装技术应用于细胞上,制备流程与上述类似,即利用静电作用机制,在细胞表面反复沉积阴/阳离子聚电解质,以实现单细胞包埋(如

图1 LBL静电自组装示意
Fig. 1 Schematic diagrams of LBL self-assembly via electrostatic interactio
LBL自组装法在包埋化学及生物物质方面已得到广泛研究。相较于其他包埋方法,LBL自组装结构及性能的调控可以通过调整工艺参数实现,包括壳层材料种类、介质离子强度、pH值等。Luo
细胞/菌株 | 聚阳离子电解质 | 聚阴离子电解质 | 参考文献 |
---|---|---|---|
小鼠神经干细胞,小鼠成牙本质细胞,毛囊干细胞 | A型明胶 | 海藻酸钠 |
[ |
海拉细胞 | 酰胺化A型明胶 | B型明胶 |
[ |
海拉细胞,小鼠胰岛瘤细胞 | 酰胺化A型明胶 | B型明胶 |
[ |
神经细胞株 | A型明胶 | 透明质酸 |
[ |
酿酒酵母细胞 | 季铵化淀粉 | 海藻酸钠 |
[ |
小鼠成纤维细胞,间充质干细胞 | 酰胺化丝素蛋白 | 羧基化丝素蛋白 |
[ |
小鼠成肌细胞,人脐静脉内皮细胞,人肝癌细胞,小鼠成纤维细胞,毛囊细胞 | 牛血浆纤维连接蛋白(FN) | 明胶 |
[ |
通过LBL自组装技术,天然高分子材料可在单细胞表面形成多功能性壳层,这一策略目前广泛应用于生物医学领域,包括细胞递送和组织工程等。通过改变壳层沉积次数和材料性质,可以调节壳层的物理化学性质,不仅能够保护包埋细胞免受外部环境刺激,而且为组织工程中,单细胞表面纳米结构的构建提供新的策略。本文重点介绍可用于LBL自组装法包埋单细胞的天然高分子材料,及其在细胞递送和组织工程中的生物医学应用。
近年来,益生菌在调节人类健康和疾病方面的研究取得了较大进
甲壳素是一种存在于天然材料中的多糖类高分子材料,壳聚糖(CS)可由甲壳素脱乙酰化生
Anselmo

图2 包埋前后BC经口灌胃1 h后的荧光成
Fig. 2 Fluorescence images of BC before and after encapsulation by oral gavage for 1
此外,ALG分子可以与C

图3 ALG凝胶化的蛋盒模
Fig. 3 Model of an egg carton for alginate gelatio
综上所述,因良好的生物相容性、易操作性等优势,CS、ALG在益生菌的包埋输送领域被广泛使用,CS与ALG独特的肠道黏附性及协同作用也为益生菌的人体输送及释放提供了良好的条件。但二者也存在随着壳层数增加,壳层溶胀程度增加的缺点,易导致LBL层对益生菌保护能力降低的问题。针对这一问题,可用C
羧甲基纤维素(CMC)是以羧甲基取代羟基的醚类纤维素,是一种阴离子聚合物;由于高黏性和低毒性,在制药领域被广泛用作粘黏聚合
Priya

图4 聚电解质在嗜酸乳杆菌表面的LBL自组装流程
Fig. 4 Flow diagram of LBL self-assembly of polyelectrolytes on the surface of Lactobacillus acidophilu
然而,有研究发现将纤维素及其衍生物包埋细胞移植体内可能会引起炎症。因此,应深入阐明纤维素的基本特性以拓展纤维素封装的未来应用。此外,大量氢键的存在导致纤维素溶解性
淀粉是一种来源丰富、可生物降解、可再生、无毒且廉价的天然高分子,可作为填料降低产品中的水分含量,以提高产品稳定性,亦可通过LBL自组装在细胞表面,为细胞提供物理屏障,同时可用作微生物的碳源,进而为细胞的生存与生长提供合适的微环

图5 季铵化淀粉改性机
Fig. 5 Mechanism of quaternary ammonium starch modificatio
Moon
淀粉在细胞包埋过程中可以维持细胞活性;同时,采用多种改性方法将淀粉与其他材料共同用于细胞包埋,具有良好的可操作性。将淀粉用于LBL自组装技术实现包埋的研究较多,但主要集中在小分子、激素等物质的包埋与输
细胞包埋的基本目的是为细胞提供保护,前文围绕这一目的对LBL自组装法包埋细胞进行了阐述,包括采用多种不同的天然高分子进行包埋,对材料进行多种方式改性以适用LBL自组装法等,展现了天然高分子材料的功能性和LBL层的结构可调性。与细胞外基质成分类似的天然高分子材料也可被用于模拟组织结构,并用于组织工程。这类材料不仅能维持包埋细胞的代谢活性和功能,还能调节细胞的增殖和分化,进一步有效减轻宿主免疫反应。其中,明胶等天然高分子材料被广泛用于在细胞表面构建仿生外壳,其可以在保证各类细胞被成功递送的同时,提供良好的相容性条件,从而形成仿生组织。
采用不同的方法可制备获得2种亚型的明胶,酸性预处理后提取可得到A型明胶,等电点为6.0~9.0;碱性预处理后在中性条件下提取可得到B型明胶,等电点为4.7~5.4。A型明胶在中性条件下呈正电性,可直接与呈负电性的细胞膜结合,用于细胞包埋领
Yang

图6 明胶包埋单个海拉细胞的壳层耐久性及细胞活性变
Fig. 6 Changes in shell durability and cell activity of single HeLa cells embedded in gelati
Zhang

图7 明胶和FN经LBL自组装包埋单细胞。
Fig. 7 Gelatin and FN were assembled through LBL technique to embed single cells
明胶作为一种可以模拟细胞外基质环境的天然高分子材料,除了可直接包覆于细胞表面,提高细胞在模拟胃肠液中的耐受性,允许内容物的释放外,还能包埋各类细胞,为形成仿生细胞提供必要的条件,在组织工程方面具有良好的应用前景。
天然高分子,如壳聚糖、海藻酸钠、纤维素、明胶及淀粉等,具有来源广、储量大、生物相容性优良等优点,且上述天然高分子具有多种功能基团,可以较容易地使用多种化学、物理方法改性,通过静电等相互作用力,吸附在细胞表面,构筑壳层以为细胞提供保护作用,广泛应用于层层自组装法单细胞包埋领域的研究。
迄今为止,层层自组装包埋细胞的研究已经取得了显著的成果,但仍存在优化工艺参数以更快获得更稳定的壳层、保证壳层稳定以在胃肠液中为包埋物质提供更好的保护作用、在体外实现长期储存等多种挑战。利用层层自组装技术的通用性、壳层可定制性等特点,可开发具有优异性能的多功能仿生智能材料,以进一步发展天然高分子自组装包埋单细胞在生物医学领域的应用。综上所述,利用层层自组装技术进行单细胞包埋在生物医学领域具有巨大的潜力。
参考文献
YANG S H, HONG D, LEE J, et al.Artificial Spores: Cytocompatible Encapsulation of Individual Living Cells Within Thin, Tough Artificial Shells[J].Small, 2013, 9(2): 178-186. [百度学术]
KIM J Y, LEE B S, CHOI J, et al.Cytocompatible Polymer Grafting from Individual Living Cells by Atom-transfer Radical Polymerization[J].Angewandte Chemie International Edition, 2016, 55(49): 15306-15309. [百度学术]
ZOPPE J O, ATAMAN N C, MOCNY P, et al.Surface-Initiated Controlled Radical Polymerization: State-of-the-art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes[J].Chemical Reviews, 2017, 117(3): 1105-1318. [百度学术]
FAKHRULLIN R F, LVOV Y M.“Face-lifting” and “Make-up” for Microorganisms: Layer-by-Layer Polyelectrolyte Nanocoating[J].ACS Nano, 2012, 6(6): 4557-4564. [百度学术]
AMANO Y, NISHIGUCHI A, MATSUSAKI M, et al.Development of Vascularized Ipsc Derived 3D-cardiomyocyte Tissues by Filtration Layer-by-Layer Technique and Their Application for Pharmaceutical Assays[J].Acta Biomaterialia, 2016, 33: 110-121. [百度学术]
GRIBOVA V, LIU C Y, NISHIGUCHI A, et al.Construction and Myogenic Differentiation of 3D Myoblast Tissues Fabricated by Fibronectin-Gelatin Nanofilm Coating[J].Biochemical and Biophysical Research Communications, 2016, 474(3): 515-521. [百度学术]
MATSUSAKI M, KADOWAKI K, NAKAHARA Y, et al.Fabrication of Cellular Multilayers with Nanometer-sized Extracellular Matrix Films[J].Angewandte Chemie International Edition, 2007, 46(25): 4689-4692. [百度学术]
NISHIGUCHI A, YOSHIDA H, MATSUSAKI M, et al.Rapid Construction of Three-Dimensional Multilayered Tissues with Endothelial Tube Networks by the Cell-accumulation Technique[J].Advanced Materials, 2011, 23(31): 3506-3510. [百度学术]
DRACHUK I, GUPTA M K, TSUKRUK V V.Biomimetic Coatings to Control Cellular Function through Cell Surface Engineering[J].Advanced Functional Materials, 2013, 23(36): 4437-4453. [百度学术]
贺斌, 成琳, 方一帆,等.水凝胶封装细胞研究进展[J].中国造纸学报, 2023, 38(3): 57-68. [百度学术]
HE B, CHENG L, FANG Y F, et al.Recent Developments of Hydrogel-encapsulaed Cells[J].Transactions of China Pulp and Paper, 2023, 38(3): 57-68. [百度学术]
DRACHUK I, SHCHEPELINA O, LISUNOVA M, et al.pH-responsive Layer-by-Layer Nanoshells for Direct Regulation of Cell Activity[J].ACS Nano, 2012, 6(5): 4266-4278. [百度学术]
AI H, FANG M, JONES S A, et al.Electrostatic Layer-by-Layer Nanoassembly on Biological Microtemplates: Platelets[J].Biomacromolecules, 2002, 3(3): 560-564. [百度学术]
KIM B J, CHO H, PARK J H, et al.Strategic Advances in Formation of Cell-in-shell Structures: From Syntheses to Applications[J].Advanced Materials, DOI:10.1002/adma.201706063. [百度学术]
OLIVEIRA M B, HATAMI J, MANO J F.Coating Strategies Using Layer-by-Layer Deposition for Cell Encapsulation[J].Chemistry–An Asian Journal, 2016, 11(12): 1753-1764. [百度学术]
ARNO M C.Engineering the Mammalian Cell Surface with Synthetic Polymers: Strategies and Applications[J].Macromolecular Rapid Communications, DOI:10.1002/marc.202000302. [百度学术]
GRANICKA L H.Nanoencapsulation of Cells Within Multilayer Shells for Biomedical Applications[J].Journal of Nanoscience and Nanotechnology, 2014, 14(1): 705-716. [百度学术]
WANG S Y, KAI M X, DUAN Y O, et al.Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cell-membrane-coated Metal-organic-framework Nanoparticles[J].Angewandte Chemie International Edition, DOI:10.1002/anie.202203115. [百度学术]
ZHANG Y, GAO W W, CHEN Y J, et al.Self-assembled Colloidal Gel Using Cell Membrane-coated Nanosponges as Building Blocks[J].ACS Nano, 2017, 11(12): 11923-11930. [百度学术]
FANG R H, JIANG Y, FANG J C, et al.Cell Membrane-derived Nanomaterials for Biomedical Applications[J].Biomaterials, 2017, 128: 69-83. [百度学术]
AN Q, HUANG T, SHI F.Covalent Layer-by-Layer Films: Chemistry, Design, and Multidisciplinary Applications[J].Chemical Society Reviews, 2018, 47(13): 5061-5098. [百度学术]
ZHAO Y, CHEN X, LI S, et al.Corrosion Resistance and Drug Release Profile of Gentamicin-loaded Polyelectrolyte Multilayers on Magnesium Alloys: Effects of Heat Treatment[J].Journal of Colloid and Interface Science, 2019, 547: 309-317. [百度学术]
LUO H T, JIANG B B, LI B Y, et al.Kaempferol Nanoparticles Achieve Strong and Selective Inhibition of Ovarian Cancer Cell Viability[J].International Journal of Nanomedicine, 2012,7: 3951-3959. [百度学术]
TANG K, BESSELING N A M.Formation of Polyelectrolyte Multilayers: Ionic Strengths and Growth Regimes[J].Soft Matter, 2016, 12(4): 1032-1040. [百度学术]
SZABÓ T, PÉTER Z, ILLÉS E, et al.Stability and Dye Inclusion of Graphene Oxide/Polyelectrolyte Layer-by-Layer Self-assembled Films in Saline, Acidic and Basic Aqueous Solutions[J].Carbon, 2017, 111: 350-357. [百度学术]
GENTILE P, CARMAGNOLA I, NARDO T, et al.Layer-by-Layer Assembly for Biomedical Applications in the Last Decade[J].Nanotechnology, DOI:10.1088/0957-4484/26/42/422001. [百度学术]
GRANICKA L H.Nanoencapsulation of Cells Within Multilayer Shells for Biomedical Applications[J].Journal of Nanoscience and Nanotechnology, 2014, 14(1): 705-716. [百度学术]
LI W Y, GUAN T, ZHANG X S, et al.the Effect of Layer-by-Layer Assembly Coating on the Proliferation and Differentiation of Neural Stem Cells[J].ACS Applied Materials & Interfaces, 2015, 7(5): 3018-3029. [百度学术]
YANG W G, CAI S X, YUAN Z, et al.Mask-free Generation of Multicellular 3D Heterospheroids Array for High-throughput Combinatorial Anti-cancer Drug Screening[J].Materials & Design, DOI:10.1016/j.matdes.2019.108182. [百度学术]
CHEN P, MIAO Y, ZHANG F F, et al.Nanoscale Microenvironment Engineering Based on Layer-by-Layer Self-assembly to Regulate Hair Follicle Stem Cell Fate for Regenerative Medicine[J].Theranostics, DOI:10.7150/thno.48723. [百度学术]
YANG J M, LI J C, LI X M, et al.Nanoencapsulation of Individual Mammalian Cells with Cytoprotective Polymer Shell[J].Biomaterials, 2017, 133: 253-262. [百度学术]
SUN J M, REN Y F, WANG W B, et al.Transglutaminase-catalyzed Encapsulation of Individual Mammalian Cells with Biocompatible and Cytoprotective Gelatin Nanoshells[J].ACS Biomaterials Science & Engineering, 2020, 6(4): 2336-2345. [百度学术]
LI W Y, ZHANG G H, GUAN T, et al.Manipulable Permeability of Nanogel Encapsulation on Cells Exerts Protective Effect Against TNF-Α-Induced Apoptosis[J].ACS Biomaterials Science & Engineering, 2018, 4(8): 2825-2835. [百度学术]
MOON H C, HAN S, BORGES J, et al.Enzymatically Degradable, Starch-based Layer-by-Layer Films: Application to Cytocompatible Single-cell Nanoencapsulation[J].Soft Matter, 2020, 16(26): 6063-6071. [百度学术]
HASTURK O, SAHOO J K, KAPLAN D L.Synthesis and Characterization of Silk Ionomers for Layer-by-Layer Electrostatic Deposition on Individual Mammalian Cells[J].Biomacromolecules, 2020, 21(7): 2829-2843. [百度学术]
CHO I, BLASER M J.The Human Microbiome: At the Interface of Health and Disease[J].Nature Reviews Genetics, 2012, 13(4): 260-270. [百度学术]
RINAUDO M.Chitin and Chitosan: Properties and Applications[J].Progress in Polymer Science, 2006, 31(7): 603-632. [百度学术]
ISLAM S, BHUIYAN M A R, ISLAM M N.Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering[J].Journal of Polymers and the Environment, 2017, 25: 854-866. [百度学术]
GEORGE M, ABRAHAM T E.Polyionic Hydrocolloids for the Intestinal Delivery of Protein Drugs: Alginate and Chitosan—A Review[J].Journal of Controlled Release, 2006, 114(1): 1-14. [百度学术]
TAN Y, CAI B, LI X, et al.Preparation and Application of Biomass-based Sprayable Hydrogels[J].Paper and Biomaterials, 2023, 8(2): 1-19. [百度学术]
ADAMCZAK M I, HAGESAETHER E, SMISTAD G, et al.An in Vitro Study of Mucoadhesion and Biocompatibility of Polymer Coated Liposomes on HT29-MTX Mucus-producing Cells[J].International Journal of Pharmaceutics, 2016, 498(1/2): 225-233. [百度学术]
ANSELMO A C, MCHUGH K J, WEBSTER J, et al.Layer-by-Layer Encapsulation of Probiotics for Delivery to the Microbiome[J].Advanced Materials, 2016, 28(43): 9486-9490. [百度学术]
COOK M T, TZORTZIS G, KHUTORYANSKIY V V, et al.Layer-by-Layer Coating of Alginate Matrices with Chitosan-Alginate for the Improved Survival and Targeted Delivery of Probiotic Bacteria after Oral Administration[J].Journal of Materials Chemistry B, 2013, 1(1): 52-60. [百度学术]
YAO M F, LU Y M, ZHANG T, et al.Improved Functionality of Ligilactobacillus Salivarius Li01 in Alleviating Colonic Inflammation by Layer-by-Layer Microencapsulation[J].Npj Biofilms and Microbiomes, DOI:10.1038/s41522-021-00228-1. [百度学术]
KAMALIAN N, MIRHOSSEINI H, MUSTAFA S, et al.Effect of Alginate and Chitosan on Viability and Release Behavior of Bifidobacterium Pseudocatenulatum G4 in Simulated Gastrointestinal Fluid[J].Carbohydrate Polymers, 2014, 111: 700-706. [百度学术]
VUNJAK N G, TANDON N, GODIER A, et al.Challenges in Cardiac Tissue Engineering[J].Tissue Engineering Part B: Reviews, 2010, 16(2): 169-187. [百度学术]
WONG T W, RAMLI N A.Carboxymethylcellulose Film for Bacterial Wound Infection Control and Healing[J].Carbohydrate Polymers, 2014, 112: 367-375. [百度学术]
BANGAR S P, WHITESIDE W S.Nano-cellulose Reinforced Starch Bio Composite Films-A Review on Green Composites[J].International Journal of Biological Macromolecules, 2021, 185: 849-860. [百度学术]
PRIYA A J, VIJAYALAKSHMI S P, RAICHUR A M.Enhanced Survival of Probiotic Lactobacillus Acidophilus by Encapsulation with Nanostructured Polyelectrolyte Layers Through Layer-by-Layer Approach[J].Journal of Agricultural and Food Chemistry, 2011, 59(21): 11838-11845. [百度学术]
YU Y, TYRIKOS E T, ZHU Y, et al.Systematic Hydrogen-bond Manipulations to Establish Polysaccharide Structure-property Correlations[J].Angewandte Chemie, 2019, 131(37): 13261-13266. [百度学术]
GUO Y B, QIAO D L, ZHAO S M, et al.Starch-based Materials Encapsulating Food Ingredients: Recent Advances in Fabrication Methods and Applications[J].Carbohydrate Polymers, DOI:10.1016/j.carbpol.2021.118358. [百度学术]
DE LA CONCHA B B S, AGAMA-ACEVEDO E, NUÑEZ-SANTIAGO M C, et al.Acid Hydrolysis of Waxy Starches with Different Granule Size for Nanocrystal Production[J].Journal of Cereal Science, 2018, 79: 193-200. [百度学术]
YANG M X,ZHANG Y R,LIU Z H,et al.Advances in Research on Cellulose-based Drug Carriers[J].Paper and Biomaterials,2023,8(4):55-68. [百度学术]
CAROSIO F, FONTAINE G, ALONGI J, et al.Starch-based Layer by Layer Assembly: Efficient and Sustainable Approach to Cotton Fire Protection[J].ACS Applied Materials & Interfaces, 2015, 7(22): 12158-12167. [百度学术]
ZHANG Y P, CHI C D, HUANG X Y, et al.Starch-based Nanocapsules Fabricated Through Layer-by-Layer Assembly for Oral Delivery of Protein to Lower Gastrointestinal Tract[J].Carbohydrate Polymers, 2017, 171: 242-251. [百度学术]
JIA R J, TENG K Y, HUANG J Y, et al.Hydrogen Bonding Crosslinking of Starch-Polyvinyl Alcohol Films Reinforced by Ultrasound-assisted and Cellulose Nanofibers Dispersed Cellulose Nanocrystals[J].Starch‐Stärke, DOI:10.1002/star.202100227. [百度学术]
LIU J, XIAO C M.Capability of Starch Derivative Containing Azo and Carboxylic Groups to Tune Photo-behaviors via LBL-assembly[J].International Journal of Biological Macromolecules, 2019, 131: 608-613. [百度学术]
ZHANG Y P, ZHONG S W, CHI C D, et al.Tailoring Assembly Behavior of Starches to Control Insulin Release from Layer-by-Layer Assembled Colloidal Particles[J].International Journal of Biological Macromolecules,2020,160: 531-537. [百度学术]
LIU J Y, HU Y, LI L, et al.Biomass-derived Multilayer-structured Microparticles for Accelerated Hemostasis and Bone Repair[J].Advanced Science, DOI:10.1002/advs.202002243. [百度学术]
BELLO A B, KIM D.Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications[J].Tissue Engineering Part B: Reviews, 2020, 26(2): 164-180. [百度学术]
ECHAVE M C, HERNÁEZ-MOYA R, ITURRIAGA L, et al.Recent Advances in Gelatin-based Therapeutics[J].Expert Opinion on Biological Therapy, 2019, 19(8): 773-779. [百度学术]
蒋天艳,刘婉嫕,王聪,等.壳聚糖/明胶/纤维素纳米晶体复合壁材制备香精微胶囊[J].中国造纸, 2021, 40(6): 34-39. [百度学术]
JIANG T Y, LIU W Y, WANG C, et al.Preparation of Fragrance Microcapsule with Chitosan/Gelatin/Cellulose Nanocrystalline Composite Wall Material[J].China Pulp and Paper, 2021, 40(6): 34-39. [百度学术]
CHEN J P, SU C H.Surface Modification of Electrospun PLLA Nanofibers by Plasma Treatment and Cationized Gelatin Immobilization for Cartilage Tissue Engineering[J].Acta Biomaterialia, 2011, 7(1): 234-243. [百度学术]
KADOWAKI K, MATSUSAKI M, AKASHI M.Control of Cell Surface and Functions by Layer-by-Layer Nanofilms[J].Langmuir, 2010, 26(8): 5670-5678. [百度学术]