摘要
以糠醛渣为原料,通过氯化镍浸渍和氯化锌活化制备了糠醛渣衍生的磁性多孔炭。结果表明,制备的多孔炭不仅具有磁性,还含有丰富的官能团和多孔结构;当浸渍后原料与氯化锌的质量比为1∶2时,比表面积达1051
随着我国纺织及印染行业的迅速发展,染料废水的排放量逐年增加,对环境和人类健康造成了巨大影
近年来,随着化石能源的消耗和环境污染的日益严重,生物质多孔炭材料的制备越来越受到研究者的重
本研究以糠醛渣为原料,以MB的吸附行为为研究对象;采用氯化镍浸渍和氯化锌活化两步法制备了糠醛渣衍生的磁性多孔炭吸附材料,以期实现“以废治废”的目的;通过优化吸附材料的制备工艺,改善其对MB的吸附性能,为有机染料废水的有效治理与生物质资源的综合利用提供理论依据。
糠醛渣,由济南圣泉集团股份有限公司提供。亚甲基蓝(MB)、氯化锌、六水合氯化镍、盐酸均为分析纯,购自国药集团化学试剂有限公司。去离子水为实验室自制。
电子分析天平(EL204,梅特勒(上海)有限公司);小型管式炉(OTF-1200X,合肥科晶仪器有限公司);恒温摇床(DH-2102,上海岛韩科技有限公司);紫外分光光度计(UV-Vis,UV-2600,日本岛津公司);比表面积及孔径分析仪(ASAP2460,美国麦克公司);扫描电子显微镜(SEM,Regulus8220,日本日立公司);X射线衍射仪(XRD,D8-ADVANCE,德国布鲁克公司);拉曼光谱仪(inVia Reflex,英国Renishaw有限公司);元素分析仪(Vario EL Ⅲ, 德国Elementar公司);电感耦合等离子体质谱仪(ICP,Agilent725,美国安捷伦公司)。
称取5.942 g六水合氯化镍于100 mL烧杯中,加入50 mL去离子水溶解,得到氯化镍溶液;称取5.0 g糠醛渣置于氯化镍溶液中,超声处理4 h后,置于80 ℃下干燥,得到氯化镍浸渍糠醛渣;将其进行研磨,然后按照不同质量比与氯化锌充分混合研磨(控制混合物总质量不变,浸渍后糠醛渣与氯化锌的质量比为1∶0(不添加氯化锌)、1∶1、1∶2、1∶3)。将混合物转移至管式炉中,控制升温速率为10 ℃/min,升温至800 ℃后保温2 h,得到黑色粉末样品。用大量去离子水洗涤黑色粉末样品至样品表面pH值为中性,在80 ℃下干燥,获得4种多孔炭样品,分别标记为Z0、Z1、Z2、Z3。
采用SEM对多孔炭样品的表面形貌进行分析;采用比表面积及孔径分析仪分析多孔炭样品的比表面积和孔径分布;采用XRD测定多孔炭样品的晶体结构;采用拉曼光谱仪分析多孔炭样品的石墨化程度和孔径结构的有序程度;采用元素分析仪测定多孔炭样品中的C、H、O、N、S元素含量,其中O含量通过减去其他元素的含量获得;采用ICP测定多孔炭样品中镍元素和锌元素的含量。
控制反应体系温度为25、35、45 ℃,称取0.05 g多孔炭,加入到40 mL浓度1000 mg/L的MB溶液中,密封后置于摇床中,恒温振荡4 h后离心,取上清液,用紫外分光光度计测定吸光度,通过MB吸光度-浓度标准曲线得到MB的浓度,并采用
(1) |
式中,C0表示MB的初始浓度,mg/L;Ce表示吸附后MB的浓度,mg/L;V表示MB溶液体积,L;m表示糠醛渣基磁性多孔炭的质量,g。
称取0.05 g多孔炭,加入到40 mL不同浓度的MB溶液(550~1000 mg/L)中,密封后置于摇床中,恒温振荡5~240 min后离心,取上清液,根据相同方法,分析吸附后MB溶液的浓度,并计算吸附量,探究MB溶液初始浓度和吸附时间对MB吸附性能的影响。吸附实验均在避光条件下进行。
利用准一级动力学模型、准二级动力学模型及颗粒内扩散模型(式(2)~
(2) |
(3) |
式中,K1、K2表示准一级、准二级速率常数,mi
(4) |
式中,K3表示颗粒内扩散速度常数,mg/(mi
磁性吸附材料的吸附性能在一定程度上与其表面结构有关。

图1 多孔炭样品的SEM图
Fig. 1 SEM images of porous carbon samples
多孔炭样品Z0和Z2的孔径结构如

图2 Z0和Z2的氮气吸附-脱附曲线和孔径分布图
Fig. 2 Nitrogen adsorption and desorption curves and pore size distribution diagrams of Z0 and Z2
样品 | 比表面积/( | 总孔体积/(c | 平均孔径/nm |
---|---|---|---|
Z0 | 301 | 0.233 | 3.99 |
Z2 | 1051 | 0.824 | 3.14 |

图3 Z0和Z2的XRD曲线和拉曼光谱
Fig. 3 XRD curves and Raman spectra of Z0 and Z2
Z0和Z2的拉曼光谱图如
为进一步探究糠醛渣基磁性多孔炭对MB的吸附性能的影响因素,对Z0和Z2的非金属元素含量进行了测定(
非金属元素 | C | N | H | O | S |
---|---|---|---|---|---|
Z0 | 50.6 | 0.4 | 1.0 | 1.4 | 0.2 |
Z2 | 51.4 | 2.6 | 2.0 | 7.1 | 0.04 |
氯化镍浸渍糠醛与氯化锌以不同质量比制备的糠醛渣基磁性多孔炭样品在45 ℃条件下,对40 mL浓度1000 mg/L MB溶液的吸附性能见

图4 不同多孔炭样品对MB的吸附性能
Fig. 4 Adsorption properties of different porous carbonsamples towards MB
温度在MB的吸附过程中起着重要作用。

图5 温度对MB吸附性能的影响
Fig. 5 Effect of temperature on the adsorption properties of MB

图6 MB初始浓度对吸附性能的影响
Fig. 6 Effect of initial concentration of MB on the adsorption properties
为了更好地理解糠醛渣基磁性多孔炭对MB的吸附性能,该吸附过程的动力学行为采用准一级、准二级和颗粒内扩散模型进行拟合,利用动态方程对数据进行非线性回归分析,结果见

图7 动力学模型拟合曲线
Fig. 7 Kinetic adsorption fitted curves
浓度/(mg· | 准一级动力学 | 准二级动力学 | 颗粒内扩散模型 | ||||||
---|---|---|---|---|---|---|---|---|---|
qe/(mg· | K1/(mi | qe/(mg· | K2/(mi | Ci/(mg·k | K3/(mg·mi | ||||
550 | 7.3 | 7.21 | 0.8451 | 436.7 | 0.45 | 0.9997 | 258.5 | 13.57 | 0.5864 |
650 | 12.0 | 12.36 | 0.9005 | 581.4 | 0.09 | 0.9922 | 126.6 | 31.90 | 0.7639 |
750 | 14.8 | 1.02 | 0.9629 | 632.9 | 0.07 | 0.9997 | 114.2 | 35.10 | 0.9001 |
850 | 12.0 | 7.97 | 0.8275 | 641.0 | 0.10 | 0.9970 | 179.5 | 32.51 | 0.8651 |
1000 | 10.7 | 9.74 | 0.8128 | 694.4 | 0.16 | 0.9994 | 289.0 | 29.91 | 0.7919 |
为了研究糠醛渣基磁性多孔炭对MB的吸附机理,根据吸附体系的性质和类型,选择Langmuir和Freundlich模型等温吸附拟合吸附数据(

图8 等温吸附模型拟合曲线
Fig. 8 Isothermal adsorption models fitted curves
Langmuir | Freundlich | ||||
---|---|---|---|---|---|
qL/(mg· |
KL/(L·m |
| n |
KF/(mg· |
|
689.7 | 0.1090 | 0.9992 | 6.268 | 296.8 | 0.8901 |
负载镍后的多孔炭具有磁性,通过外加磁场能够很容易地从水相中分离,这为该吸附材料的循环使用提供了便利,也为后续的工业化应用提供了条件。当MB吸附完成后,在外加磁场的作用下,将制备的糠醛渣基磁性多孔炭附着在容器壁上,从溶液中分离出来,并用盐酸脱附;去离子水冲洗至多孔碳表面pH呈中性后进行下一次吸附;25 ℃下的循环吸附实验结果如

图9 糠醛渣基磁性多孔炭的吸附循环性能
Fig. 9 Adsorption cycle properties of furfural residue-based magnetic porous carbon
以糠醛渣为原料,通过氯化镍浸渍和氯化锌活化法,制备了具有优良吸附性能的磁性多孔炭,对所得吸附材料进行了表征分析,并探究了其对亚甲基蓝的吸附性能。
3.1 准二级动力学模型更好地拟合了糠醛渣基磁性多孔炭对亚甲基蓝的吸附数据,说明该吸附过程以化学吸附为主;糠醛渣基磁性多孔炭的吸附过程与Langmuir模型更吻合,表示多孔炭对亚甲基蓝的吸附为单层吸附。
3.2 当氯化镍浸渍原料与氯化锌的质量比为1∶2时,所得多孔炭的吸附性能最好。在45 ℃下,该多孔炭对亚甲基蓝的平衡吸附性量,可达732.5 mg/g。在25 ℃下,利用外加磁场对样品进行循环吸附实验,经5次吸附后,该多孔炭对亚甲基蓝仍具有良好的吸附性能,为239.5 mg/g,说明该多孔炭在未来的工业化废水处理中具有较大潜力。
参考文献
BOCZKAI G, FERNANDES A. Wastewater Treatment by Means of Advanced Oxidation Processes at Basic pH Conditions: A Review[J]. Chemical Engineering Journal, 2017, 320: 608-633. [百度学术]
吕后鲁, 刘德启. 工业废水处理技术综述[J]. 石油化工环境保护, 2006, 29(4): 15-19. [百度学术]
LYU H L, LIU D Q. Overview of Industrial Wastewater Treatment Technologies[J]. Environmental Protection in Petrochemical Industry, 2006, 29(4): 15-19. [百度学术]
朱国婷, 邢献军, 汪家权, 等. 酸预处理活性炭对废水染料的吸附研究[J]. 环境科学与技术, 2016, 39(S2): 166-171. [百度学术]
ZHU G T, XING X J, WANG J Q, et al. Adsorption Study of Wastewater Dyes on Acid Pretreated Activated Carbon[J]. Environmental Science & Technology, 2016, 39(S2): 166-171. [百度学术]
孙荣泽, 耿龙龙, 公 超, 等. 明胶衍生多孔碳的制备及其吸附亚甲基蓝性能研究[J]. 山东化工, 2019, 48(5):221-223. [百度学术]
SUN R Z, GENG L L, GONG C, et al. Preparation of Gelatin-derived Porous Carbon and Its Performance in Adsorption of Methylene Blue[J]. Shandong Chemical Industry, 2019, 48(5): 221-223. [百度学术]
CRINI G. Non-conventional Low-cost Adsorbents for Dye Removal: A Review[J]. Bioresource Technology, 2006, 97(9): 1061-1085. [百度学术]
梁 波, 关 杰. 吸附法处理亚甲基蓝研究[J]. 工业用水与废水, 2015, 46(1): 6-11. [百度学术]
LIANG B, GUAN J. Study on Treatment of Methylene Blue by Adsorption[J]. Industrial Water & Wastewater, 2015, 46(1): 6-11. [百度学术]
刘廷志, 段希磊, 段韦江, 等. 制浆造纸低浓废水的吸附絮凝法深度处理[J]. 中国造纸, 2010, 29(1): 43-46. [百度学术]
LIU T Z, DUAN X L, DUAN W J, et al. Adsorption and Flocculation for the Deep Treatment of Low-strength Pulp and Paper Wastewater[J]. China Pulp & Paper, 2010, 29(1): 43-46. [百度学术]
MAHMOODI N M, SALEHI R, ARAMI M. Binary System Dye Removal from Colored Textile Wastewater Using Activated Carbon: Kinetic and Isotherm Studies[J]. Desalination, 2011, 272(1/3): 187-195. [百度学术]
万小芳, 刘宝联, 李友明, 等. 赖氨酸改性纳米纤维素的表征及其对亚甲基蓝的吸附行为研究[J]. 中国造纸, 2017, 36(5): 7-13. [百度学术]
WAN X F, LIU B L, LI Y M, et al. Characterization of Lysine-modified Nanocellulose and Its Adsorption Behavior on Methylene Blue[J]. China Pulp & Paper, 2017, 36(5): 7-13. [百度学术]
TANG D, ZHAO R, LI F, et al. Surface Modification of Bamboo-based Activated Carbon for Methylene Blue Removal[J]. Paper and Biomaterials, 2023, 8(1): 12-25. [百度学术]
WANG H M, LIU Z, HUI L F, et al. Biomass-derived Porous Carbon Materials for Supercapacitor Electrodes: A Review[J]. Paper and Biomaterials, 2020, 5(2): 60-75. [百度学术]
ZHAO X, LIU X H, QI F L, et al. Efficient Preparation of P-doped Carbon with Ultra-high Mesoporous Ratio from Furfural Residue for Dye Removal[J]. Separation and Purification Technology, DOI: 10.1016/j.seppur.2022.120954. [百度学术]
赵修松, 蔡光宇, 王作周, 等. 糠醛渣活性炭的制备和性能研究[J]. 林产化学与工业, 1994(2): 57-60. [百度学术]
ZHAO X S, CAI G Y, WANG Z Z, et al. Preparation and Properties of Activated Carbon from Furfural Residue[J]. Forest Products Chemistry and Industry, 1994 (2): 57-60. [百度学术]
黄宇翔, 于文吉, 赵广杰. KOH活化木质碳纤维的孔隙结构及其成孔机理[J]. 林业工程学报, 2018, 3(2): 82-87. [百度学术]
HANG Y X, YU W J, ZHAO G J. Pore Structure and Pore-forming Mechanism of KOH Activated Wood Carbon Fiber[J]. Journal of Forestry Engineering, 2018, 3(2): 82-87. [百度学术]
包 嵩, 陈少茹, 吴 健,等. 稻壳灰对亚甲基蓝的吸附性能研究[J]. 化学教与学, 2022, 588(24): 60-63. [百度学术]
BAO S, CHEN S R, WU J, et al. Adsorption Properties of Rice Husk Ash on Methylene Blue[J]. Chemistry Teaching and Learning, 2022, 588(24): 60-63. [百度学术]
MUNAWER M H, CHEE H L, KIEW P L. Magnetized Orange Peel:A Ralistic Approach for Methylene Blue Removal[J]. Materials Today, 2021, 47: 1287-1294. [百度学术]
王 帅, 李少琪, 刁玲玲. 花生壳和玉米芯生物炭对亚甲基蓝的吸附性能[J]. 环境科学导刊, 2021, 40(5): 9-15. [百度学术]
WANG S, LI S Q, DIAO L L. Adsorption Performance of Peanut Shell and Corn Cob Biochar on Methylene Blue[J]. Environmental Science Survey, 2021, 40(5): 9-15. [百度学术]
TANG X, RAN G, LI J, et al. Extremely Efficient and rapidly Adsorb Methylene Blue Using Porous Adsorbent Prepared from Waste Paper: Kinetics and Equilibrium Studies[J]. Journal of Hazardous Materials, DOI: 10.1016/j.jhazmat.2020.123579. [百度学术]
JUNG K W, JEONG T U, KANG H J, et al. Characteristics of Biochar Derived from Marine Macroalgae and Fabrication of Granular Biochar by Entrapment in Calcium-alginate Beads for Phosphate Removal from Aqueous Solution[J]. Bioresource Technology, 2016, 211: 108-116. [百度学术]
CHEN B, YANG Z, MA G, et al. Heteroatom-doped Porous Carbons with Enhanced Carbon Dioxide Uptake and Excellent Methylene Blue Adsorption Capacities[J]. Microporous and Mesoporous Materials, 2018, 257: 1-8. [百度学术]
QUAN R V, TAN Y H, MUBARAK N M, et al. An Overview of Biodiesel Production Using Recyclable Biomass and Non-biomass Derived Magnetic Catalysts[J]. Journal of Environmental Chemical Engineering, DOI: 10.1016/j.jece.2019.103219. [百度学术]
MOHANTY P, NANDA S, PANT K K, et al. Evaluation of the Physiochemical Development of Biochars Obtained from Pyrolysis of Wheat Straw, Timothy Grass and Pinewood: Effects of Heating Rate[J]. Journal of Analytical & Applied Pyrolysis, 2013, 104: 485-493. [百度学术]
ZHANG P, TAN X, LIU S, et al. Catalytic Degradation of Estrogen by Persulfate Activated with Iron-doped Graphitic Biochar: Process Variables Effects and Matrix Effects[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2019.122141. [百度学术]
DING Z, WAN Y, HU X, et al. Sorption of Lead and Methylene Blue onto Hickory Biochars from Different Pyrolysis Temperatures: Importance of Physicochemical Properties[J]. Journal of Industrial & Engineering Chemistry, 2016, 37: 261-267. [百度学术]
KARIMIFARD S, ALAVI MOGHADDAM M R. Removal of an Anionic Reactive Dye from Aqueous Solution Using Functionalized Multi-walled Carbon Nanotubes: Isotherm and Kinetic Studies[J]. Desalination and Water Treatment, 2016, 57(35): 16643-16652. [百度学术]
GONG Y, LI D, LUO C, et al. Highly Porous Graphitic Biomass Carbon as Advanced Electrode Materials for Supercapacitors[J]. Green Chemistry, 2017, 19(17): 4132-4140. [百度学术]
MAHMOUD D K, SALLEH M, WAN A, et al. Batch Adsorption of Basic Dye Using Acid Treated Kenaf Fiber Char: Equilibrium, Kinetic and Thermodynamic Studies[J]. Chemical Engineering Journal, 2012, 181: 449-457. [百度学术]
GUPTA V K, JAIN R, SIDDIQUI M N, et al. Equilibrium and Thermodynamic Studies on the Adsorption of the Dye Rhodamine-B onto Mustard Cake and Activated Carbon[J]. Journal of Chemical & Engineering Data, 2010, 55: 5225-5229. [百度学术]
MOHAMMADI S, HOSSEINZADEH H. Quince Seed Mucilage Magnetic Nanocomposites as Novel Bioadsorbents for Efficient Removal of Cationic Dyes from Aqueous Solutions[J]. Carbohydrate Polymers, 2015, 134: 213-221. [百度学术]
LIU S, LI J, XU S, et al. A Modified Method for Enhancing Adsorption Capability of Banana Pseudostem Biochar Towards Methylene Blue at Low Temperature[J]. Bioresource Technology, 2019, 282: 48-55. [百度学术]
SUN L, CHEN D, WAN S, et al. Performance, Kinetics, and Equilibrium of Methylene Blue Adsorption on Biochar Derived from Eucalyptus Saw Dust Modified with Citric, Tartaric, and Acetic Acids[J]. Bioresource Technology, 2015, 198: 300-308. [百度学术]