摘要
纸基材料具有良好的应用性能,但较强的吸水性严重制约了其在很多领域的应用。采用石油基化合物进行疏水化处理会破坏纸基材料原本的可降解性。因此,目前研究人员更加关注以生物相容性好的生物基多糖作为疏水改性剂原料。本文综述了近年来生物基多糖在改善纸基材料疏水性方面的研究进展,重点介绍了纤维素、淀粉、壳聚糖、海藻酸盐等生物基多糖的疏水改性及其在纸基材料疏水化处理中的应用现状,并对未来发展趋势进行了总结与展望。
近年来,随着“限塑令”的不断升级,具有绿色、环保、可生物降解等优势的纸基材料受到越来越多的关注。纸基材料大多是由植物纤维及其他添加剂(填料、助剂等)制成的具有三维多孔结构的膜材料,具有原料来源广泛、成本低廉、无毒无害等特
目前,提高纸张疏水性的方法主要有纤维改
多糖是由10个或以上单糖通过糖苷键连接构成的高分子聚合物,可以从动物(壳聚糖)、植物(纤维素、淀粉)及藻类(海藻酸盐)中获得(

图1 常用于纸基材料疏水化处理的多糖及其分子结构
Fig. 1 Polysaccharides and their molecular structure commonly used for hydrophobicity treatment of paper-based materials
生物基多糖分子链中常含有大量的极性基团(如羟基、氨基、羧基等

图2 多糖的疏水改性及其在纸基材料中的应用
Fig. 2 Hydrophobic modification of polysaccharides and their applications in paper-based materials
纤维素是地球上储量最丰富的天然高分子聚合物,也是植物细胞壁的主要组成成分;据估算,通过光合作用合成的纤维素产量高达1×1
除天然纤维素外,纳米纤维素是另一种被广泛研究的纤维素类疏水改性剂原料。纳米纤维素是指至少有一维尺寸小于100 nm的纤维素,根据其制备方法及来源,可分为纤维素纳米晶体(CNC)、纤维素纳米纤维(CNF)及细菌纤维素(BC

图3 (a) ODA-PTA@CNC超疏水纸的制备及(b) 不同ODA-PTA@CNC涂布量超疏水纸的WC
Fig. 3 (a) Preparation of ODA-PTA@CNC superhydrophobic paper; (b) WCA of ODA-PTA@CNC superhydrophobic paper with different coating amount
综上所述,将疏水改性的纤维素衍生物、纳米纤维素等应用于纸基材料,不仅表现出优异的生物相容性,而且能够有效地提升纸基材料疏水性。然而,由于缺乏绿色、廉价、有效的纤维素溶剂,传统的纤维素疏水改性均在多相介质中进行,存在工艺复杂、产品均一性差、结构调控困难及能耗高等问题。虽然纳米纤维素能够在水相体系中进行改性,但目前纳米纤维素的生产成本较高,暂时无法满足大规模工业化应用的要求。
淀粉是自然界中另一种普遍存在的生物基多糖类物质;淀粉与纤维素的化学结构相似,不同之处在于淀粉的葡萄糖单元是通过α-1,4-糖苷键连接。淀粉分子中的羟基可以与纸张纤维表面的羟基结合,从而提高纸张纤维间的氢键数量及结合能力,在纸张表面形成一层连续的淀粉
淀粉的疏水改性通常是对其亲水性羟基进行化学修饰,通过接枝疏水性官能团来提高其疏水性。Li
此外,淀粉还可与其他疏水材料配合使用来提高纸张的疏水性,常见的方法是以有机硅化合物作为疏水改性剂。这主要得益于有机硅化合物表面张力低、表面能小,且具有良好的成膜性和疏水
经过疏水改性处理的淀粉作为疏水涂层应用于纸基材料,能够赋予纸基材料较好的疏水性,有利于新型生物基材料的开发和应用。但不同于来源丰富的纤维素,淀粉来源于玉米、马铃薯等粮食作物,主要用于保障人类的食物来源,因此工业用淀粉的产量较低,应用不如纤维素广泛。另外,淀粉的酯化、醚化等疏水改性方法存在反应效率低、反应过程复杂等缺点,这也在一定程度上限制了淀粉作为疏水改性剂原料的广泛应用。
壳聚糖(CS)是由甲壳素经脱乙酰基处理后得到的一种多糖。甲壳素广泛存在于甲壳纲动物中,如虾、蟹等的壳体内,是地球上储量仅次于纤维素的天然高分子聚合物。CS主要是由葡糖胺和N-乙酰化葡糖胺单元构成,其结构特性主要与聚合度、乙酰化程度,以及葡糖胺与N-乙酰化葡糖胺单元的序列有关。CS分子链中含有大量氨基,是一种碱性多
研究表明,CS的乙酰基含量和分子质量是影响其疏水性的重要因素,较高的脱乙酰化程度和分子质量能够使CS具有更好的疏水性。Catto
通过调控CS的分子性质还不能够赋予材料足够的疏水性,因此还需要进一步改性。目前比较有潜力的策略是生物酶法改性,该方法具有反应特异性强、稳定性高且环境友好等优点。Ni

图4 (a) CS共聚物涂层的制备及(b) 纤维素与CS共聚物涂层之间的氢键结合示意
Fig. 4 (a) Preparation of chitosan copolymer coating; (b) schematic diagram of hydrogen bonding between cellulose and chitosan copolymer coating
相比于纤维素和淀粉,CS由于分子内存在氨基,具有较好的抗菌性能,因此在实际应用中,CS常用来制备兼具抗菌性和疏水性的纸基功能材料。Goué
海藻酸盐是从藻类中提取的一种线性高分子聚合物,由β-D-甘露糖醛酸(M)和α-L-古洛糖醛酸(G)通过1,4-糖苷键连接构成。海藻酸盐中含有大量亲水性基团(—COOH和—OH),因此易溶于
离子交联是提高海藻酸盐疏水性的有效手段。海藻酸盐带有大量的负电荷,通过阴离子与二价阳离子相互桥接,分子链之间紧密结合,可以有效提高海藻酸盐涂层的疏水性。Zhu

图5 (a) SA/HPMC/PVB/HSNP防水防油纸的制
Fig. 5 (a) Preparation of SA/HPMC/PVB/HSNP waterproof and greaseproof paper
海藻酸盐常用的化学改性方法有酯化法、酰胺化法、接枝共聚法等,但上述方法在纸基材料方面的应用研究相对较少。单一的海藻酸盐疏水性较差,可通过纸张表面的层层自组装技术(LbL)进行修饰,以制备超疏水纸。Li
除纤维素、淀粉、壳聚糖和海藻酸盐4种多糖外,半纤维
生物基多糖具有出色的生物相容性、可生物降解性和成膜性等优势,在替代传统的石油基疏水改性剂方面具有巨大的潜力。尽管目前相关学者对生物基多糖的疏水改性做了较多的研究工作,但仍然面临一些问题和挑战。
3.1 生物基多糖的化学改性仍存在过程复杂、效率低、成本高等问题,开发高效、低成本的改性方法仍是目前研究的焦点。与此同时,需要关注过度的化学修饰是否会破坏多糖的可生物降解性,进而造成环境问题。
3.2 疏水改性的生物基多糖聚合物主要以涂布的方式应用于纸基材料,而对其他应用方式(如纤维改性、浆内添加等)的探究相对较少。此外,由于表面涂布并不能在本质上改变纸基材料的亲水性,因此疏水涂层的稳定性、耐久性及其与基质的相容性等还需进一步研究。
3.3 未来研究可以尝试在改善纸基材料疏水性的同时赋予材料其他功能特性,如将多糖与纳米碳材料相结合,制备兼具疏水性和导电性的特种纸等。
参考文献
易 凯, 付时雨. 纤维素基超疏水材料的制备与应用研究进展[J]. 中国造纸, 2022, 41(2): 115-121. [百度学术]
YI K, FU S Y. Research Progress in the Preparation and Application of Cellulose Based Superhydrophobic Materials[J]. China Pulp & Paper, 2022,41 (2): 115-121. [百度学术]
HUANG H, MAO L, WANG W, et al. A Facile Strategy to Fabricate Antibacterial Hydrophobic, High-barrier, Cellulose Papersheets for Food Packaging[J]. International Journal of Biological Macromolecules, DOI: 10.1016/j.ijbiomac.2023.123630. [百度学术]
中国造纸工业2023年度报告[J]. 造纸信息, 2024(5): 6-17. [百度学术]
2023 Annual Report of China's Paper Industry[J]. China Paper Nwesletters, 2024(5): 6-17. [百度学术]
王 超, 高海龙, 陈晓倩, 等. 纤维素基纸表面疏水改性研究进展[J]. 纤维素科学与技术, 2020, 28(4): 63-73. [百度学术]
WANG C, GAO H L, CHEN X Q, et al. Research Progress on Surface Hydrophobic Modification of Cellulose Based Paper[J] Journal of Cellulose Science and Technology, 2020, 28 (4): 63-73. [百度学术]
李俊伟, 程正柏, 刘利琴, 等. 超疏水纸基功能材料的应用研究进展[J]. 中国造纸, 2023, 42(5): 162-172. [百度学术]
LI J W, CHENG Z B, LIU L Q, et al. Research Progress in the Application of Paper-based Superhydrophobic Functional Materials[J]. China Pulp & Paper, 2023, 42(5): 162-172. [百度学术]
NONGBE M C, BRETEL G, EKOU L, et al. Cellulose Paper Azide as a Molecular Platform for Versatile Click Ligations: Application to the Preparation of Hydrophobic Paper Surface[J]. Cellulose, 2018, 25: 1395-1411. [百度学术]
陈显非, 王 伟, 刘彦军. 疏水性丙烯酸树脂纸张防水剂的制备与应用[J]. 中国造纸, 2010, 29 (11): 19-22. [百度学术]
CHEN X F, WANG W, LIU Y J. Preparation and Application of Hydrophobic Acrylic Resin Paper Waterproofing Agent[J]. China Pulp & Paper, 2010, 29 (11): 19-22. [百度学术]
HE Y, ZHOU Y, CAI J, et al. Facile Fabrication of Hydrophobic Paper by HDTMS Modified Chitin Nanocrystals Coating for Food Packaging[J]. Food Hydrocolloids, DOI: 10.1016/j.foodhyd.2022. 107915. [百度学术]
SINGH S S, ZAITOON A, SHARMA S, et al. Enhanced Hydrophobic Paper-sheet Derived from Miscanthus × Giganteus Cellulose Fibers Coated with Esterified Lignin and Cellulose Acetate Blend[J]. International Journal of Biological Macromolecules, 2022, 223: 1243-1256. [百度学术]
ADIBI A, TRINH B M, MEKONNEN T H. Recent Progress in Sustainable Barrier Paper Coating for Food Packaging Applications[J]. Progress in Organic Coatings, DOI: 10.1016/j.porgcoat.2023.107566. [百度学术]
LI Q, WANG S, JIN X, et al. The Application of Polysaccharides and Their Derivatives in Pigment, Barrier, and Functional Paper Coatings[J]. Polymers, DOI: doi.org/10.3390/polym12081837. [百度学术]
CUI C, GAO L, DAI L, et al. Hydrophobic Biopolymer-based Films: Strategies, Properties, and Food Applications[J]. Food Engineering Reviews, 2023, 15(2): 360-379. [百度学术]
ZHANG M, HE J, DENG M, et al. Rheological Behaviours of Guar Gum Derivatives with Hydrophobic Unsaturated Long-chains[J]. RSC Advances, 2020, 10(53): 32050-32057. [百度学术]
刘晓菲, 张 雪, 程 芸, 等. 多糖聚合物涂层对纸基包装材料水蒸气阻隔性能的研究进展[J]. 中国造纸学报, 2021, 36(4): 76-84. [百度学术]
LIU X F, ZHANG X CHENG Y, et al. Research Progress on the Water Vapor Barrier Performance of Polysaccharide Polymer Coatings on Paper Based Packaging Materials[J]. Transactions of China Pulp and Paper, 2021, 36 (4): 76-84. [百度学术]
姜可心, 曾伟新, 王习文. 可降解阻隔涂层在纸基食品包装材料中的应用[J]. 中国造纸, 2021, 40(12): 81-89. [百度学术]
JIANG K X, ZENG W X, WANG X W. The Application of Biodegradable Barrier Coatings in Paper Based Food Packaging Materials[J]. China Pulp & Paper, 2021, 40 (12): 81-89. [百度学术]
杜开峰, 乔亮智. 纤维素基功能材料[J]. 工程科学与技术,2019,51(3):9-16. [百度学术]
DU K F, QIAO L Z. Cellulose Based Functional Materials[J] Advanced Engineering Sciences, 2019, 51(3): 9-16. [百度学术]
WANG Y, ZHANG H, LIN L, et al. Modification of Cellulose by Hydrophobic Long-chain Molecules: Advances and Prospects[J]. Paper and Biomaterials, 2020, 5(3): 31-43. [百度学术]
张 雪, 胡小莉, 张红杰, 等. 纸基材料水蒸气阻隔性能的研究现状及发展趋势[J].中国造纸,2022,41(11):87-101. [百度学术]
ZHANG X, HU X L, ZHANG H J, et al. Research Status and Development Trend of Water Vapor Barrier Performance of Paper Based Materials[J]. China Pulp & Paper, 2022,41 (11): 87-101. [百度学术]
YANG Z, ZHANG J, QI Y, et al. Application of Hydrophobically Modified Hydroxyethyl Cellulose-methyl Methacrylate Copolymer Emulsion in Paper Protection[J]. Nordic Pulp & Paper Research Journal, 2022, 37(2): 282-289. [百度学术]
PADHI S, SINGH A, ROUTRAY W. Nanocellulose from Agro-waste: A Comprehensive Review of Extraction Methods and Applications[J]. Reviews in Environmental Science and Bio/Technology, 2023, 22(1): 1-27. [百度学术]
DUFRESNE A. Preparation and Properties of Cellulose Nanomaterials[J]. Paper and Biomaterials, 2020, 5(3): 1-13. [百度学术]
PACAPHOL K, SERAYPHEAP K, AHT-ONG D. Extraction and Silylation of Cellulose Nanofibers from Agricultural Bamboo Leaf Waste for Hydrophobic Coating on Paper[J]. Journal of Natural Fibers, DOI: 10.1080/15440478.2023.2178581. [百度学术]
朱兆栋, 郑学梅, 付时雨, 等. 纤维素微纳颗粒的硅烷化改性对制备超疏水材料的影响[J]. 中国造纸, 2018, 37(12): 14-20. [百度学术]
ZHU Z D, ZHENG X M, FU S Y, et al. The Effect of Silanization Modification of Cellulose Micro/Nano Particles on the Preparation of Superhydrophobic Materials[J]. China Pulp & Paper, 2018, 37 (12): 14-20. [百度学术]
XIANG H, WANG B, ZHONG M, et al. Sustainable and Versatile Superhydrophobic Cellulose Nanocrystals[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(18): 5939-5948. [百度学术]
YI K, FU S Y, ZHANG H, et al. Cellulose Nanofibrils/Polydimethylsiloxane Double-layer Coating for Fabrication of High Barrier and Excellent Water- and Oil-resistance Paper[J]. Progress in Organic Coatings, DOI: 10.1016/j.porgcoat.2022.107123. [百度学术]
WEI B, SUN B, ZHANG B, et al. Synthesis, Characterization and Hydrophobicity of Silylated Starch Nanocrystal[J]. Carbohydrate Polymers, 2016, 136: 1203-1208. [百度学术]
WANG X, HUANG L, ZHANG C, et al. Research Advances in Chemical Modifications of Starch for Hydrophobicity and its Applications: A Review[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol. 2020.116292. [百度学术]
LI Z, DING Y J, ZHANG B, et al. Effect of Octenylsuccinylation of Oxidized Cassava Starch on Grease Resistance and Waterproofing of Food Wrapping Paper[J]. Starch-Stärke, DOI: 10.1002/star. 201800284. [百度学术]
LE P T, NGUYEN K T. Hydrophobizing Cellulose Surfaces via Catalyzed Transesterification Reaction Using Soybean Oil and Starch[J]. Heliyon, DOI: 10.1016/j.heliyon.2020.e05559. [百度学术]
NOWAK T, MAZELA B, OLEJNIK K, et al. Starch-silane Structure and Its Influence on the Hydrophobic Properties of Paper[J]. Molecules, 2022, 27(10): 3136-3151. [百度学术]
GANICZ T, ROZGA-WIJAS K. Siloxane-starch-based Hydrophobic Coating for Multiple Recyclable Cellulosic Materials[J]. Materials, 2021, 14(17): 4977-4992. [百度学术]
FANTA G F, FELKER F C, HAY W T, et al. Increased Water Resistance of Paper Treated with Amylose-fatty Ammonium Salt Inclusion Complexes[J]. Industrial Crops and Products, 2017, 105: 231-237. [百度学术]
ZHANG F, WANG C, WANG X, et al. Fabrication of Superhydrophobic and Lyophobic Paper for Self‑cleaning, Moisture-proof and Antibacterial Activity[J]. Applied Surface Science, DOI: 10.1016/j.apsusc.2022.153639. [百度学术]
隋振全, 毛金超, 徐桂云, 等. 天然生物质材料的制备, 性质与应用(Ⅰ)——自然界唯一的碱性多糖: 甲壳素/壳聚糖[J]. 日用化学工业, 2022, 52(1): 7-14. [百度学术]
SUI Z Q, MAO J C, XU G Y, et al. Preparation, Properties, and Applications of Natural Biomass Materials (Ⅰ)—The Only Alkaline Polysaccharide in Nature: Chitin/Chitosan[J]. China Surfactant Detergent & Cosmetics, 2022, 52 (1): 7-14. [百度学术]
NUNES C, COIMBRA M A, FERREIRA P. Tailoring Functional Chitosan‐based Composites for Food Applications[J]. The Chemical Record, 2018, 18(7/8): 1138-1149. [百度学术]
GATTO M, OCHI D, YOSHIDA C M P, et al. Study of Chitosan with Different Degrees of Acetylation as Cardboard Paper Coating[J]. Carbohydrate Polymers, 2019, 210: 56-63. [百度学术]
TANPICHAI S, SRIMARUT Y, WORAPRAYOTE W, et al. Chitosan Coating for the Preparation of Multilayer Coated Paper for Food-contact Packaging: Wettability, Mechanical Properties, and Overall Migration[J]. International Journal of Biological Macromolecules, 2022, 213: 534-545. [百度学术]
NI S, LIU N, FU Y, et al. Laccase-catalyzed Chitosan-monophenol Copolymer as a Coating on Paper Enhances Its Hydrophobicity and Strength[J]. Progress in Organic Coatings, DOI: 10.1016/j.porgcoat.2020.106026. [百度学术]
GOUÉ E L, HAMPICHAVANT F, GRELIER S, et al. Functional Chitosan-Calcium Carbonate Coatings for Enhancing Water and Fungal Resistance of Paper Materials[J]. Molecules, 2022, 27(24): 8886-8903. [百度学术]
LING H, WANG L, LIN Q, et al. Antimicrobial Cellulose Paper Tuned with Chitosan Fibers for High-flux Oil/Water Separation[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2023.120794. [百度学术]
BOONMAHITTHISUD A, BOORANAPUNPONG C, PATTARADECHAKUL C, et al. Development of Water-resistant Paper Using Chitosan and Plant-based Wax Extracted From Banana Leaves[J]. International Journal of Biological Macromolecules, DOI: 10.1016/j.ijbiomac. 2023.124412. [百度学术]
HECHT H, SREBNIK S. Structural Characterization of Sodium Alginate and Calcium Alginate[J]. Biomacromolecules, 2016, 17(6): 2160-2167. [百度学术]
ZHU R, FU X, JIN S, et al. Water and Oil-resistant Paper Materials Based on Sodium Alginate/Hydroxypropyl Methylcellulose/Polyvinyl Butyral/Nano-silica with Biodegradable and High Barrier Properties[J]. International Journal of Biological Macromolecules, 2023, 225: 162-171. [百度学术]
ZHOU X, WU M, FU L, et al. A Facile Preparation Process of Polyhexamethylene Biguanide/Cellulose/Polylactic Acid Fiber Composite Antibacterial Paper[J]. Industrial Crops and Products, DOI: 10.1016/j.indcrop.2022.115980. [百度学术]
LI H, YANG J, LI P, et al. A Facile Method for Preparation Superhydrophobic Paper with Enhanced Physical Strength and Moisture-proofing Property[J]. Carbohydrate Polymers, 2017, 160: 9-17. [百度学术]
NECHITA P, ROMAN M, NĂSTAC S M. Green Approaches on Modification of Xylan Hemicellulose to Enhance the Functional Properties for Food Packaging Materials—A Review[J]. Polymers, DOI: 10.3390/polym15092088. [百度学术]
薛 贝, 沈一丁, 杨晓武, 等. 烷基烯酮二聚体改性瓜尔胶的制备及应用[J]. 中国造纸, 2011, 30(9): 23-27. [百度学术]
XUE B, SHEN Y D, YANG X W, et al. Preparation and Application of Alkyl Ketene Dimer Modified Guar Gum[J]. China Pulp & Paper, 2011, 30 (9): 23-27. [百度学术]
NURUL SYAHIDA S, AINUN Z M A, ISMAILFITRY M R, et al. Development and Characterisation of Gelatine/Palm Wax/Lemongrass Essential Oil (GPL)‐coated Paper for Active Food Packaging[J]. Packaging Technology and Science, 2020, 33(10): 417-431. [百度学术]
邱 格, 陈 港, 魏 渊, 等. 基于多层涂布工艺的高阻隔透明纸基材料的制备与性能[J]. 复合材料学报,2023,40(3):1484-1493. [百度学术]
QIU G, CHEN G, WEI Y, et al. Preparation and Properties of High Barrier Transparent Paper Based Materials Based on Multi-layer Coating Process [J]. Acta Materiae Composite Sinica, 2023,40(3): 1484-1493. [百度学术]
WANG X, LIU Y, LIU X, et al. Degradable Gelatin-based Supramolecular Coating for Green Paper Sizing[J]. ACS Applied Materials & Interfaces, 2020, 13(1): 1367-1376. [百度学术]