本文二维码信息
二维码(扫一下试试看!)
Study on Intelligent Prediction Model of Papermaking Wastewater Effluent Quality Index Based on Ensemble Deep Learning
Received:August 07, 2024  Revised:October 21, 2024
DOI:10.11981/j.issn.1000-6842.2025.02.173
Key Words:papermaking wastewater treatment process;data dimensionality reduction;long short-term memory network;ensemble learning;soft sensor mode
Fund Project:山东省自然科学基金(ZR2021MF135);江苏省高等学校自然科学研究重大项目(22KJA530003)。
Author NameAffiliationPostcode
WANG Jinyong* Nanjing Forestry University, Nanjing, Jiangsu Province, 210037 210037
WANG Xinyuan Nanjing Forestry University, Nanjing, Jiangsu Province, 210037 210037
WEI Wenguang Shandong Huatai Paper Co., Ltd., Dongying, Shandong Province, 257335
Shandong Yellow Triangle Biotechnology Industry Research Institute Co., Ltd., Dongying, Shandong Province, 257399 
257399
ZHANG Fengshan Shandong Huatai Paper Co., Ltd., Dongying, Shandong Province, 257335
Shandong Yellow Triangle Biotechnology Industry Research Institute Co., Ltd., Dongying, Shandong Province, 257399 
257399
HUANG Peng Shandong Huatai Paper Co., Ltd., Dongying, Shandong Province, 257335 257335
ZHOU Jingpeng Shandong Huatai Paper Co., Ltd., Dongying, Shandong Province, 257335 257335
WAN Bing Shandong Huatai Paper Co., Ltd., Dongying, Shandong Province, 257335 257335
NIU Guoqiang South China Normal University, Guangzhou, Guangdong Province, 510006 510006
LIU Hongbin* Nanjing Forestry University, Nanjing, Jiangsu Province, 210037
Shandong Huatai Paper Co., Ltd., Dongying, Shandong Province, 257335 
257335
Hits: 11
Download times: 4
Abstract:
      To address the limitations of single model and improve overall robustness, this study focused on a wastewater treatment dataset from a single processing stage of a small-scale papermaking plant, took kernel principal component analysis (KPCA) for dimensionality reduction to effectively extract key features from the data, firstly. Then, integrated multiple long-short term memory (LSTM) learners using the Bagging ensemble strategy, and constructed a KPCA-Bagging-LSTM prediction model, where LSTM was capable of modeling the temporal characteristics of wastewater data. The results showed that the KPCA-Bagging-LSTM model achieved a coefficient of determination (R²) of 0.76, significantly outperforming other methods. The Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) were 3.55 mg/L and 4.01%, respectively, indicating lower prediction error and higher accuracy. By combining feature dimensionality reduction with ensemble learning, the proposed KPCA-Bagging-LSTM model enhanced prediction performance and provided an effective solution for forecasting COD and other effluent indicators in papermaking wastewater treatment.
View Full Text  View/Add Comment  Download reader  HTML

share