院金彪,周 强,郑海英,郭文强,汤 伟.基于朴素贝叶斯分类器的纸病离线静态辨识方法研究[J].中国造纸学报,2014,29(1):58-62 本文二维码信息
二维码(扫一下试试看!)
基于朴素贝叶斯分类器的纸病离线静态辨识方法研究
Paper Defects Offline Static Identification Based on Naive Bayes Classifier
  
DOI:
中文关键词:  朴素贝叶斯分类器  条件概率  后验概率  纸病离线静态辨识
Key Words:naive Bayes Classifier  conditional probability  posterior probability  paper defects offline static identification
基金项目:陕西省科技统筹创新工程计划项目(2012KTCQ01-19);陕西省科技攻关项目(2011K06-06);陕西省教育厅专项科研计划项目(2010JK420);陕西科技大学科研启动基金(BJ10-05);陕西科技大学学术骨干培育计划(XSG2010010)。
作者单位
院金彪1 1.陕西科技大学电气与信息工程学院陕西西安710021 
周 强1 1.陕西科技大学电气与信息工程学院陕西西安710021 
郑海英2 2.察右中旗第一中学内蒙古乌兰察布市013550 
郭文强 1.陕西科技大学电气与信息工程学院陕西西安710021 
汤 伟 1.陕西科技大学电气与信息工程学院陕西西安710021 
摘要点击次数: 3365
全文下载次数: 1211
中文摘要:
      针对当前纸病处理方法通用性弱、鲁棒性差的问题,研究了一种使用概率精确判别纸病类别的方法。该方法通过训练样本获得各类纸病特征量的条件概率分布,利用朴素贝叶斯分类器原理求得某一纸病特征向量属于各种纸病的后验概率,进而通过比较各后验概率的大小进行纸病辨识,这可满足纸病辨识的静态性能要求,同时,利用朴素贝叶斯分类器具有最小错误率的特点,保证纸病辨识精度。实验结果表明,该方法具有很强的通用性,能够有效、快速地对纸病进行辨识。
Abstract:
      Considering the problems of weak algorithm versatility, poor robustness of current paper defects identification methods. This paper proposed a method of using probability value to identify the category of the paper defects. This method obtained the prior probability distribution and conditional probability value of paper defects through training samples. These values were used to posterior probability calculation which could determine the type of paper defects, to simplify the computation and meet the real-time requirements of paper defect identification process, meanwhile the application of Bayesian Classifier with the smallest error rate characteristic could guarantee the accuracy requirement of the identification. Experiments results showed that this method could effectively and quickly identify defects on paper with strong versatility.
查看全文  查看/发表评论  下载PDF阅读器  HTML

分享按钮